31 resultados para Finite Simple Groups

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exhibition of information does not always attend to the preferences and characteristics of the users, nor the context that involves the user. With the aim of overcoming this gap, we propose an emotional context-aware model for adapting information contents to users and groups. The proposed model is based on OCC and Big Five models to handle emotion and personality respectively. The idea is to adapt the representation of the information in order to maximize the positive emotional valences and minimize the negatives. To evaluate the proposed model it was developed a prototype for adapting RSS news to users and group of users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neste artigo, descrevo e analiso uma actividade de trabalho em grupo desenvolvida para uma aula da disciplina de Língua Inglesa VI das turmas do 3º ano do Curso de Línguas e Secretariado do Instituto Superior de Contabilidade e Administração do Porto (ISCAP). No enquadramento teórico, abordam-se questões relacionadas com o trabalho em grupo numa aula de língua estrangeira, nomeadamente a dimensão social da sala de aula em geral e da interacção aluno-aluno em particular. Apresentam-se então os princípios da Exploratory Practice, com ênfase na possibilidade preconizada por esta abordagem de se poder transformar uma actividade de reflexão e discussão sobre o processo de ensino/aprendizagem numa unidade pedagógica. Segue-se a apresentação da proposta didáctica, respectivo plano de aula e alguns exemplos dos textos produzidos pelos alunos. O artigo termina com a apresentação de alguns comentários críticos, realçando-se a contribuição da Exploratory Practice para o desenvolvimento de uma maior consciencialização por parte dos alunos do seu processo de aprendizagem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paracetamol is among the most worldwide consumed pharmaceuticals. Although its occurrence in the environment is well documented, data about the presence of its metabolites and transformation products is very scarce. The present work describes the development of an analytical method for the simultaneous determination of paracetamol, its principal metabolite (paracetamol-glucuronide) and its main transformation product (p-aminophenol) based on solid phase extraction (SPE) and high performance liquid chromatography coupled to diode array detection (HPLC-DAD). The method was applied to analysis of river waters, showing to be suitable to be used in routine analysis. Different SPE sorbents were compared and the use of two Oasis WAX cartridges in tandem proved to be the most adequate approach for sample clean up and pre-concentration. Under optimized conditions, limits of detection in the range 40–67 ng/L were obtained, as well as mean recoveries between 60 and 110% with relative standard deviations (RSD) below 6%. Finally, the developed SPE-HPLC/DAD method was successfully applied to the analysis of the selected compounds in samples from seven rivers located in the north of Portugal. Nevertheless all the compounds were detected, it was the first time that paracetamol-glucuronide was found in river water at concentrations up to 3.57 μg/L.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Component joining is typically performed by welding, fastening, or adhesive-bonding. For bonded aerospace applications, adhesives must withstand high-temperatures (200°C or above, depending on the application), which implies their mechanical characterization under identical conditions. The extended finite element method (XFEM) is an enhancement of the finite element method (FEM) that can be used for the strength prediction of bonded structures. This work proposes and validates damage laws for a thin layer of an epoxy adhesive at room temperature (RT), 100, 150, and 200°C using the XFEM. The fracture toughness (G Ic ) and maximum load ( ); in pure tensile loading were defined by testing double-cantilever beam (DCB) and bulk tensile specimens, respectively, which permitted building the damage laws for each temperature. The bulk test results revealed that decreased gradually with the temperature. On the other hand, the value of G Ic of the adhesive, extracted from the DCB data, was shown to be relatively insensitive to temperature up to the glass transition temperature (T g ), while above T g (at 200°C) a great reduction took place. The output of the DCB numerical simulations for the various temperatures showed a good agreement with the experimental results, which validated the obtained data for strength prediction of bonded joints in tension. By the obtained results, the XFEM proved to be an alternative for the accurate strength prediction of bonded structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor networks (WSNs) emerge as underlying infrastructures for new classes of large-scale networked embedded systems. However, WSNs system designers must fulfill the quality-of-service (QoS) requirements imposed by the applications (and users). Very harsh and dynamic physical environments and extremely limited energy/computing/memory/communication node resources are major obstacles for satisfying QoS metrics such as reliability, timeliness, and system lifetime. The limited communication range of WSN nodes, link asymmetry, and the characteristics of the physical environment lead to a major source of QoS degradation in WSNs-the ldquohidden node problem.rdquo In wireless contention-based medium access control (MAC) protocols, when two nodes that are not visible to each other transmit to a third node that is visible to the former, there will be a collision-called hidden-node or blind collision. This problem greatly impacts network throughput, energy-efficiency and message transfer delays, and the problem dramatically increases with the number of nodes. This paper proposes H-NAMe, a very simple yet extremely efficient hidden-node avoidance mechanism for WSNs. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes that scales to multiple clusters via a cluster grouping strategy that guarantees no interference between overlapping clusters. Importantly, H-NAMe is instantiated in IEEE 802.15.4/ZigBee, which currently are the most widespread communication technologies for WSNs, with only minor add-ons and ensuring backward compatibility with their protocols standards. H-NAMe was implemented and exhaustively tested using an experimental test-bed based on ldquooff-the-shelfrdquo technology, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. H-NAMe effectiveness was also demonstrated in a target tracking application with mobile robots - over a WSN deployment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This technical report tackles the hidden-node problem in WSNs and proposes HNAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this technical report will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This paper tackles the hiddennode problem in WSNs and proposes H-NAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this paper will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protocol

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Time-sensitive Wireless Sensor Network (WSN) applications require finite delay bounds in critical situations. This paper provides a methodology for the modeling and the worst-case dimensioning of cluster-tree WSNs. We provide a fine model of the worst-case cluster-tree topology characterized by its depth, the maximum number of child routers and the maximum number of child nodes for each parent router. Using Network Calculus, we derive “plug-and-play” expressions for the endto- end delay bounds, buffering and bandwidth requirements as a function of the WSN cluster-tree characteristics and traffic specifications. The cluster-tree topology has been adopted by many cluster-based solutions for WSNs. We demonstrate how to apply our general results for dimensioning IEEE 802.15.4/Zigbee cluster-tree WSNs. We believe that this paper shows the fundamental performance limits of cluster-tree wireless sensor networks by the provision of a simple and effective methodology for the design of such WSNs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple procedure to measure the cohesive laws of bonded joints under mode I loading using the double cantilever beam test is proposed. The method only requires recording the applied load–displacement data and measuring the crack opening displacement at its tip in the course of the experimental test. The strain energy release rate is obtained by a procedure involving the Timoshenko beam theory, the specimen’s compliance and the crack equivalent concept. Following the proposed approach the influence of the fracture process zone is taken into account which is fundamental for an accurate estimation of the failure process details. The cohesive law is obtained by differentiation of the strain energy release rate as a function of the crack opening displacement. The model was validated numerically considering three representative cohesive laws. Numerical simulations using finite element analysis including cohesive zone modeling were performed. The good agreement between the inputted and resulting laws for all the cases considered validates the model. An experimental confirmation was also performed by comparing the numerical and experimental load–displacement curves. The numerical load–displacement curves were obtained by adjusting typical cohesive laws to the ones measured experimentally following the proposed approach and using finite element analysis including cohesive zone modeling. Once again, good agreement was obtained in the comparisons thus demonstrating the good performance of the proposed methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive-bonding for the unions in multi-component structures is gaining momentum over welding, riveting and fastening. It is vital for the design of bonded structures the availability of accurate damage models, to minimize design costs and time to market. Cohesive Zone Models (CZM’s) have been used for fracture prediction in structures. The eXtended Finite Element Method (XFEM) is a recent improvement of the Finite Element Method (FEM) that relies on traction-separation laws similar to those of CZM’s but it allows the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom. This work proposes and validates a damage law to model crack propagation in a thin layer of a structural epoxy adhesive using the XFEM. The fracture toughness in pure mode I (GIc) and tensile cohesive strength (sn0) were defined by Double-Cantilever Beam (DCB) and bulk tensile tests, respectively, which permitted to build the damage law. The XFEM simulations of the DCB tests accurately matched the experimental load-displacement (P-d) curves, which validated the analysis procedure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mathematical model is proposed for the evolution of temperature, chemical composition, and energy release in bubbles, clouds, and emulsion phase during combustion of gaseous premixtures of air and propane in a bubbling fluidized bed. The analysis begins as the bubbles are formed at the orifices of the distributor, until they explode inside the bed or emerge at the free surface of the bed. The model also considers the freeboard region of the fluidized bed until the propane is thoroughly burned. It is essentially built upon the quasi-global mechanism of Hautman et al. (1981) and the mass and heat transfer equations from the two-phase model of Davidson and Harrison (1963). The focus is not on a new modeling approach, but on combining the classical models of the kinetics and other diffusional aspects to obtain a better insight into the events occurring inside a fluidized bed reactor. Experimental data are obtained to validate the model by testing the combustion of commercial propane, in a laboratory-scale fluidized bed, using four sand particle sizes: 400–500, 315–400, 250–315, and 200–250 µm. The mole fractions of CO2, CO, and O2 in the flue gases and the temperature of the fluidized bed are measured and compared with the numerical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural integrity of multi-component structures is usually determined by the strength and durability of their unions. Adhesive bonding is often chosen over welding, riveting and bolting, due to the reduction of stress concentrations, reduced weight penalty and easy manufacturing, amongst other issues. In the past decades, the Finite Element Method (FEM) has been used for the simulation and strength prediction of bonded structures, by strength of materials or fracture mechanics-based criteria. Cohesive-zone models (CZMs) have already proved to be an effective tool in modelling damage growth, surpassing a few limitations of the aforementioned techniques. Despite this fact, they still suffer from the restriction of damage growth only at predefined growth paths. The eXtended Finite Element Method (XFEM) is a recent improvement of the FEM, developed to allow the growth of discontinuities within bulk solids along an arbitrary path, by enriching degrees of freedom with special displacement functions, thus overcoming the main restriction of CZMs. These two techniques were tested to simulate adhesively bonded single- and double-lap joints. The comparative evaluation of the two methods showed their capabilities and/or limitations for this specific purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O aproveitamento de pneus em fim de vida revela ser uma alternativa eficaz e promissora na indústria da construção civil, na utilização deste resíduo em muros de suporte. O presente trabalho tem como principal objetivo a apresentação de uma técnica de aproveitamento de pneus em fim de vida na execução de muros de gravidade, combinando solo e pneus. Neste sentido, tomou-se como referência um estudo realizado no Brasil por Sieira, Sayão, Medeiros e Gerscovich, para avaliar a eficiência e o custo deste tipo de estruturas, comparando-o com um muro de suporte tradicional de betão simples. Inicialmente, avaliou-se a segurança do muro de solo-pneus, de acordo com a metodologia proposta no Eurocódigo 7 (NP EN 1997-1, 2010), considerando a geometria e as características dos materiais apresentados no estudo referido e usando o programa de cálculo automático Slide, da Rocscience, para a verificação da estabilidade global. Reproduziu-se a análise numérica realizada no âmbito do caso de estudo brasileiro de referência, recorrendo também a uma formulação por elementos finitos com o programa de cálculo automático Phase2, da Rocscience. Por último, utilizando uma vez mais o programa Slide, definiu-se a geometria de um muro de betão simples cuja geometria garantisse o mesmo valor do fator de segurança à estabilidade global, obtido com o muro de solo-pneus e compararam-se os custos respetivos. O presente trabalho confirmou a eficiência e o baixo custo desta solução construtiva, sendo necessários, no entanto, estudos mais detalhados que reforcem estas conclusões.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study is to optimize the heat flow through the pultrusion die assembly system on the manufacturing process of a specific glass-fiber reinforced polymer (GFRP) pultrusion profile. The control of heat flow and its distribution through whole die assembly system is of vital importance in optimizing the actual GFRP pultrusion process. Through mathematical modeling of heating-die process, by means of Finite Element Analysis (FEA) program, an optimum heater selection, die position and temperature control was achieved. The thermal environment within the die was critically modeled relative not only to the applied heat sources, but also to the conductive and convective losses, as well as the thermal contribution arising from the exothermic reaction of resin matrix as it cures or polymerizes from the liquid to solid condition. Numerical simulation was validated with basis on thermographic measurements carried out on key points along the die during pultrusion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is based on a previous experimental work in which embedded cylindrical heaters were applied to a pultrusion machine die, and resultant energetic performance compared with that achieved with the former heating system based on planar resistances. The previous work allowed to conclude that the use of embedded resistances enhances significantly the energetic performance of pultrusion process, leading to 57% decrease of energy consumption. However, the aforementioned study was developed with basis on an existing pultrusion die, which only allowed a single relative position for the heaters. In the present work, new relative positions for the heaters were investigated in order to optimize heat distribution process and energy consumption. Finite Elements Analysis was applied as an efficient tool to identify the best relative position of the heaters into the die, taking into account the usual parameters involved in the process and the control system already tested in the previous study. The analysis was firstly developed with basis on eight cylindrical heaters located in four different location plans. In a second phase, in order to refine the results, a new approach was adopted using sixteen heaters with the same total power. Final results allow to conclude that the correct positioning of the heaters can contribute to about 10% of energy consumption reduction, decreasing the production costs and leading to a better eco-efficiency of pultrusion process.