8 resultados para Fe-doped
em Instituto Politécnico do Porto, Portugal
Resumo:
O presente trabalho pretendeu desenvolver e testar um sensor óptico para detectar ciclamato de sódio, um adoçante artificial utilizado nas bebidas em geral. A primeira abordagem neste sentido baseou-se na preparação de um sensor óptico através da formação de complexos corados entre o ciclamato e várias espécies metálicas, nomeadamente Hg(II), Ba(II), Fe(II), Ag(II), Pb(II), Cd(II), Mn (II), Ni(II), Cu(II), Co(II), Sn(II) e Mg(II). Perante a ausência de resultados satisfatórios optou-se por explorar a acção do ciclamato de sódio na transferência/partilha de um corante entre duas fases líquidas imiscíveis. As fases líquidas utilizadas foram a água e o clorofórmio. Testaram-se várias famílias de corantes mas só uma classe se mostrou com as características apropriadas para o objectivo pretendido. Dentro dessa família de corantes, seleccionou-se aquele que, à partida, garantiu o melhor desempenho. O sensor foi testado em diferentes condições de pH e também na presença de potenciais interferentes de forma a estabelecer as melhores condições de utilização. O método mostrou-se bastante simples de executar, rápido na obtenção de resultados e com boas características para ser avaliado visualmente, mas sempre de acordo com os critérios de objectividade que um trabalho deste tipo requer. Além o disso permitiu ser calibrado de uma forma rápida e simples, características essenciais para a aplicação deste método na despistagem de ciclamato em análises de rotina. O método desenvolvido foi ainda aplicado à análise de vinho dopado com diferentes concentrações de ciclamato de sódio. Destes testes verificou-se a necessidade de optimização do método através da introdução de outras substâncias na fase não aquosa diminuindo a vulnerabilidade do sensor a outros interferentes. Como conclusão, o método correspondeu às expectativas, mostrando-se viável para aplicação à análise de vinhos, ainda com uma margem significativa de desenvolvimento no sentido de o tornar mais fiável e preciso.
Flavoured versus natural waters: macromineral (Ca, Mg, K, Na) and micromineral (Fe, Cu, Zn) contents
Resumo:
Macro (Ca, Mg, K, Na) and micromineral (Fe, Zn, Cu) composition of 39 waters was analysed. Determinations were made by atomic flame spectrophotometry for macrominerals and electrothermic atomisation in graphite furnace for microminerals. Mineral contents of still or sparkling natural waters (without flavours) changed from brand to brand. Mann–Whitney test was used to search for significant differences between flavoured and natural waters. For that, the concentration of each mineral was compared to the presence of flavours, preservatives, acidifying agents, fruit juice and/or sweeteners, according to the labelled composition. The statistical study demonstrated that flavoured waters generally have increased contents of K, Na, Fe and Cu. The added preservatives also led to significant differences in the mineral composition. Acidifying agents and fruit juice can also be correlated to the increase of Mg, K, Na, Fe and Cu. Sweeteners do not provide any significant difference in Ca, Mg, Fe and Zn contents.
Resumo:
Silica based nanostructured composite materials doped with luminol and cobalt(II) ion were synthesized and characterized, resulting in a highly chemiluminescent material in the presence of hydrogen peroxide. A detection system with the CL light guided from the reaction tube to the photomultiplier tube using a one millimeter glass optical fiber was developed and assessed. A linear response was observed using a semi-logarithm calibration between 50–2000 µM hydrogen peroxide with 1 µM as the limit of detection.
Resumo:
ZnO films doped with vanadium (ZnO:V) have been prepared by dc reactive magnetron sputtering technique at different substrate temperatures (RT–500 C). The effects of the substrate temperature on ZnO:V films properties have been studied. XRD measurements show that only ZnO polycrystalline structure has been obtained, no V2O5 or VO2 crystal phase can be observed. It has been found that the film prepared at low substrate temperature has a preferred orientation along the (002) direction. As the substrate temperature is increased, the (002) peak intensity decreases. When the substrate temperature reaches the 500 C, the film shows a random orientation. SEM measurements show a clear formation of the nano-grains in the sample surface when the substrate temperature is higher than 400 C. The optical properties of the films have been studied by measuring the specular transmittance. The refractive index has been calculated by fitting the transmittance spectra using OJL model combined with harmonic oscillator.
Resumo:
A novel enzymatic biosensor for carbamate pesticides detection was developed through the direct immobilization of Trametes versicolor laccase on graphene doped carbon paste electrode functionalized with Prussianblue films (LACC/PB/GPE). Graphene was prepared by graphite sonication-assisted exfoliation and characterized by transmission electron microscopy and X-ray photoelectron spectro- scopy. The Prussian blue film electrodeposited onto graphene doped carbon paste electrode allowed considerable reduction of the charge transfer resistance and of the capacitance of the device.The combined effects of pH, enzyme concentration and incubation time on biosensor response were optimized using a 23 full-factorial statistical design and response surface methodology. Based on the inhibition of laccase activity and using 4-aminophenol as redox mediator at pH 5.0,LACC/PB/GPE exhibited suitable characteristics in terms of sensitivity, intra-and inter-day repeatability (1.8–3.8% RSD), reproducibility (4.1 and 6.3%RSD),selectivity(13.2% bias at the higher interference: substrate ratios tested),accuracy and stability(ca. twenty days)for quantification of five carbamates widely applied on tomato and potato crops.The attained detection limits ranged between 5.2×10−9 mol L−1(0.002 mg kg−1 w/w for ziram)and 1.0×10−7 mol L−1 (0.022 mg kg−1 w/w for carbofuran).Recovery values for the two tested spiking levels ranged from 90.2±0.1%(carbofuran)to 101.1±0.3% (ziram) for tomato and from 91.0±0.1%(formetanate)to 100.8±0.1%(ziram)for potato samples.The proposed methodology is appropriate to enable testing pesticide levels in food samples to fit with regulations and food inspections.
Resumo:
Mestrado em Engenharia Química - Ramo Tecnologias de Protecção Ambiental
Resumo:
A bi-enzymatic biosensor (LACC–TYR–AuNPs–CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC–TYR–AuNPs–CS/GPE exhibited an improved Michaelis–Menten kinetic constant (26.9 ± 0.5 M) when compared with LACC–AuNPs–CS/GPE (37.8 ± 0.2 M) and TYR–AuNPs–CS/GPE (52.3 ± 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.68×10− 9 ± 1.18×10− 10 – 2.15×10− 7 ± 3.41×10− 9 M), high accuracy, sensitivity (1.13×106 ± 8.11×104 – 2.19×108 ± 2.51×107 %inhibition M− 1), repeatability (1.2–5.8% RSD), reproducibility (3.2–6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 ± 0.3% (lemon) to 97.8 ± 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control.
Resumo:
Optically transparent cocatalyst film materials is very desirable for improved photoelectrochemical (PEC)oxygen evolution reaction (OER) over light harvesting photoelectrodes which require the exciting light to irradiate through the cocatalyst side, i.e., front-side illumination. In view of the reaction overpotential at electrode/electrolyte interface, the OER electrocatalysts have been extensively used as cocatalysts for PEC water oxidation on photoanode. In this work, the feasibility of a one-step fabrication of the transparent thin film catalyst for efficient electrochemical OER is investigated. The Ni-Fe bimetal oxide films, 200 nm in thickness, are used for study. Using a reactive magnetron co-sputtering technique, transparent(> 50% in wavelength range 500-2000 nm) Ni-Fe oxide films with high electrocatalytic activities were successfully prepared at room temperature. Upon optimization, the as-prepared bimetal oxide film with atomic ratio of Fe/Ni = 3:7 demonstrates the lowest overpotential for the OER in aqueous KOH solution, as low as 329 mV at current density of 2 mA cm 2, which is 135 and 108 mV lower than that of as-sputtered FeOx and NiOx thin films, respectively. It appears that this fabrication strategy is very promising to deposit optically transparent cocatalyst films on photoabsorbers for efficient PEC water splitting.