40 resultados para Economic resource use
em Instituto Politécnico do Porto, Portugal
Resumo:
Demand response concept has been gaining increasing importance while the success of several recent implementations makes this resource benefits unquestionable. This happens in a power systems operation environment that also considers an intensive use of distributed generation. However, more adequate approaches and models are needed in order to address the small size consumers and producers aggregation, while taking into account these resources goals. The present paper focuses on the demand response programs and distributed generation resources management by a Virtual Power Player that optimally aims to minimize its operation costs taking the consumption shifting constraints into account. The impact of the consumption shifting in the distributed generation resources schedule is also considered. The methodology is applied to three scenarios based on 218 consumers and 4 types of distributed generation, in a time frame of 96 periods.
Resumo:
Intensive use of Distributed Generation (DG) represents a change in the paradigm of power systems operation making small-scale energy generation and storage decision making relevant for the whole system. This paradigm led to the concept of smart grid for which an efficient management, both in technical and economic terms, should be assured. This paper presents a new approach to solve the economic dispatch in smart grids. The proposed methodology for resource management involves two stages. The first one considers fuzzy set theory to define the natural resources range forecast as well as the load forecast. The second stage uses heuristic optimization to determine the economic dispatch considering the generation forecast, storage management and demand response
Resumo:
The introduction of electricity markets and integration of Distributed Generation (DG) have been influencing the power system’s structure change. Recently, the smart grid concept has been introduced, to guarantee a more efficient operation of the power system using the advantages of this new paradigm. Basically, a smart grid is a structure that integrates different players, considering constant communication between them to improve power system operation and management. One of the players revealing a big importance in this context is the Virtual Power Player (VPP). In the transportation sector the Electric Vehicle (EV) is arising as an alternative to conventional vehicles propel by fossil fuels. The power system can benefit from this massive introduction of EVs, taking advantage on EVs’ ability to connect to the electric network to charge, and on the future expectation of EVs ability to discharge to the network using the Vehicle-to-Grid (V2G) capacity. This thesis proposes alternative strategies to control these two EV modes with the objective of enhancing the management of the power system. Moreover, power system must ensure the trips of EVs that will be connected to the electric network. The EV user specifies a certain amount of energy that will be necessary to charge, in order to ensure the distance to travel. The introduction of EVs in the power system turns the Energy Resource Management (ERM) under a smart grid environment, into a complex problem that can take several minutes or hours to reach the optimal solution. Adequate optimization techniques are required to accommodate this kind of complexity while solving the ERM problem in a reasonable execution time. This thesis presents a tool that solves the ERM considering the intensive use of EVs in the smart grid context. The objective is to obtain the minimum cost of ERM considering: the operation cost of DG, the cost of the energy acquired to external suppliers, the EV users payments and remuneration and penalty costs. This tool is directed to VPPs that manage specific network areas, where a high penetration level of EVs is expected to be connected in these areas. The ERM is solved using two methodologies: the adaptation of a deterministic technique proposed in a previous work, and the adaptation of the Simulated Annealing (SA) technique. With the purpose of improving the SA performance for this case, three heuristics are additionally proposed, taking advantage on the particularities and specificities of an ERM with these characteristics. A set of case studies are presented in this thesis, considering a 32 bus distribution network and up to 3000 EVs. The first case study solves the scheduling without considering EVs, to be used as a reference case for comparisons with the proposed approaches. The second case study evaluates the complexity of the ERM with the integration of EVs. The third case study evaluates the performance of scheduling with different control modes for EVs. These control modes, combined with the proposed SA approach and with the developed heuristics, aim at improving the quality of the ERM, while reducing drastically its execution time. The proposed control modes are: uncoordinated charging, smart charging and V2G capability. The fourth and final case study presents the ERM approach applied to consecutive days.
Resumo:
The massification of electric vehicles (EVs) can have a significant impact on the power system, requiring a new approach for the energy resource management. The energy resource management has the objective to obtain the optimal scheduling of the available resources considering distributed generators, storage units, demand response and EVs. The large number of resources causes more complexity in the energy resource management, taking several hours to reach the optimal solution which requires a quick solution for the next day. Therefore, it is necessary to use adequate optimization techniques to determine the best solution in a reasonable amount of time. This paper presents a hybrid artificial intelligence technique to solve a complex energy resource management problem with a large number of resources, including EVs, connected to the electric network. The hybrid approach combines simulated annealing (SA) and ant colony optimization (ACO) techniques. The case study concerns different EVs penetration levels. Comparisons with a previous SA approach and a deterministic technique are also presented. For 2000 EVs scenario, the proposed hybrid approach found a solution better than the previous SA version, resulting in a cost reduction of 1.94%. For this scenario, the proposed approach is approximately 94 times faster than the deterministic approach.
Resumo:
Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.
Resumo:
4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.
Resumo:
We investigate whether firms’ economic and financial situation influence the Quality of their Financial Reports (FRQ). FRQ is fundamental for investors and it affects the international capital movements [Bradshaw et al. (2004)] and Gelos and Wei (2005)]. Following Schipper and Vicent (2003) we use two issues to access earnings quality: abnormal accruals and earnings persistence. For seventeen European countries, we find evidence that the economic performance affects FRQ. Big firms and those with high current earnings exhibit better financial information. These results are robust since they don’t depend on FRQ proxy and we have the same evidence when we estimate regression with economical and financial factors separately or together. About financial situation, it seems not to affect FRQ. However, in high leveraged firms, the capital structure becomes determinant.
Resumo:
Smart Grids (SGs) appeared as the new paradigm for power system management and operation, being designed to integrate large amounts of distributed energy resources. This new paradigm requires a more efficient Energy Resource Management (ERM) and, simultaneously, makes this a more complex problem, due to the intensive use of distributed energy resources (DER), such as distributed generation, active consumers with demand response contracts, and storage units. This paper presents a methodology to address the energy resource scheduling, considering an intensive use of distributed generation and demand response contracts. A case study of a 30 kV real distribution network, including a substation with 6 feeders and 937 buses, is used to demonstrate the effectiveness of the proposed methodology. This network is managed by six virtual power players (VPP) with capability to manage the DER and the distribution network.
Resumo:
Distributed Energy Resources (DER) scheduling in smart grids presents a new challenge to system operators. The increase of new resources, such as storage systems and demand response programs, results in additional computational efforts for optimization problems. On the other hand, since natural resources, such as wind and sun, can only be precisely forecasted with small anticipation, short-term scheduling is especially relevant requiring a very good performance on large dimension problems. Traditional techniques such as Mixed-Integer Non-Linear Programming (MINLP) do not cope well with large scale problems. This type of problems can be appropriately addressed by metaheuristics approaches. This paper proposes a new methodology called Signaled Particle Swarm Optimization (SiPSO) to address the energy resources management problem in the scope of smart grids, with intensive use of DER. The proposed methodology’s performance is illustrated by a case study with 99 distributed generators, 208 loads, and 27 storage units. The results are compared with those obtained in other methodologies, namely MINLP, Genetic Algorithm, original Particle Swarm Optimization (PSO), Evolutionary PSO, and New PSO. SiPSO performance is superior to the other tested PSO variants, demonstrating its adequacy to solve large dimension problems which require a decision in a short period of time.
Resumo:
Energy resource scheduling becomes increasingly important, as the use of distributed resources is intensified and massive gridable vehicle use is envisaged. The present paper proposes a methodology for dayahead energy resource scheduling for smart grids considering the intensive use of distributed generation and of gridable vehicles, usually referred as Vehicle- o-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with V2G owners. It takes into account these contracts, the user´s requirements subjected to the VPP, and several discharge price steps. Full AC power flow calculation included in the model allows taking into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33 bus distribution network and V2G is used to illustrate the good performance of the proposed method.
Resumo:
Ensuring sustainable development conditions is presently world widely recognized as a critically important goal. This makes the use of electricity generation technologies based on renewable energy sources very relevant. Developing countries depend on an adequate availability of electrical energy to assure economic progress and are usually characterized by a high increase in electricity consumption. This makes sustainable development a huge challenge but it can also be taken as an opportunity, especially for countries which do not have fossil resources. This paper presents a study concerning the expansion of an already existent wind farm, located in Praia, the capital of Cape Verde Republic. The paper includes results from simulation studies that have been undertaken using PSCAD software and some economic considerations.
Resumo:
The present paper results of an ongoing research project were it is expected to develop an information system to monitoring a cultural-touristic route. The route to monitor is the Romanesque Route of Tâmega. This Route is composed of 58 monuments located in the region of Tâmega in the North of Portugal. Due to the particular location of this region, that is between coastal zone, but not yet in the inland, it has a weak political influence, and it is reflected in the low levels of development at several levels, observed. The Romanesque Route was implemented in a part of this region in 1998, and enlarged to the all-region in 2010. In order to evaluate the socio-ecomonic impact of this route in the region a research project is being developed. The main goal of this paper is to open a discussion on the elements that must be taken into consideration to evaluate the economic and social impact of a touristic cultural route within a region and this one in particular.
Resumo:
As instituições particulares de solidariedade social (IPSS) são entidades constituídas por iniciativa de particulares e sem finalidade lucrativa com o propósito de dar expressão organizada ao dever moral de solidariedade e de justiça entre os indivíduos. Considerando as dificuldades económicas que Portugal atravessa estas instituições assumem um papel fundamental na sociedade de hoje, sendo o mesmo reconhecido por estado e clientes. O capital humano é o elemento central no que concerne aos ativos intangíveis e é formado pelas pessoas que integram a instituição. É essencial analisar a gestão dos recursos humanos das IPSS tendo em conta que estes, alinhados com a direção, são parte fulcral para a instituição atingir os objetivos a que se propõe. Com este estudo pretendemos analisar as práticas de gestão de recursos humanos aplicadas pelas IPSS e para o conseguir utilizamos um questionário diagnóstico, distribuído a uma amostra da população, e analisamos as práticas de uma IPSS através de um estudo de caso. O estudo mostrou que as IPSS aplicam maioritariamente a gestão administrativa de recursos humanos e que a regulamentação das instituições por parte da Segurança Social é um fator importante na tipologia de gestão aplicada. As conclusões baseiam-se na análise do estudo de caso e das respostas ao questionário, pelas IPSS da amostra, razão pela qual a generalização das conclusões deverá ser ponderada.
Resumo:
Dissertação apresentada no Instituto Superior de Contabilidade e Administração do Porto para a obtenção do Grau de Mestre em Auditoria ORIENTADOR: DOUTORA MARIA CLARA DIAS PINTO RIBEIRO
Resumo:
Orientada pela Prof. Doutora Cláudia Lopes