12 resultados para Dwarf Galaxy Fornax Distribution Function Action Based
em Instituto Politécnico do Porto, Portugal
Resumo:
In the context of the Bologna Declaration a change is taking place in the teaching/learning paradigm. From teaching-centered education, which emphasizes the acquisition and transmission of knowledge, we now speak of learning-centered education, which is more demanding for students. This paradigm promotes a continuum of lifelong learning, where the individual needs to be able to handle knowledge, to select what is appropriate for a particular context, to learn permanently and to understand how to learn in new and rapidly changing situations. One attempt to face these challenges has been the experience of ISCAP regarding the teaching/learning of accounting in the course Managerial Simulation. This paper describes the process of teaching, learning and assessment in an action-based learning environment. After a brief general framework that focuses on education objectives, we report the strengths and limitations of this teaching/learning tool. We conclude with some lessons from the implementation of the project.
Resumo:
This paper presents a new and efficient methodology for distribution network reconfiguration integrated with optimal power flow (OPF) based on a Benders decomposition approach. The objective minimizes power losses, balancing load among feeders and subject to constraints: capacity limit of branches, minimum and maximum power limits of substations or distributed generators, minimum deviation of bus voltages and radial optimal operation of networks. The Generalized Benders decomposition algorithm is applied to solve the problem. The formulation can be embedded under two stages; the first one is the Master problem and is formulated as a mixed integer non-linear programming problem. This stage determines the radial topology of the distribution network. The second stage is the Slave problem and is formulated as a non-linear programming problem. This stage is used to determine the feasibility of the Master problem solution by means of an OPF and provides information to formulate the linear Benders cuts that connect both problems. The model is programmed in GAMS. The effectiveness of the proposal is demonstrated through two examples extracted from the literature.
Resumo:
Mestrado em Educação Pré-Escolar
Resumo:
Mestrado em Educação Pré-Escolar e Ensino do 1.º Ciclo do Ensino Básico
Resumo:
Energy resource scheduling is becoming increasingly important, such as the use of more distributed generators and electric vehicles connected to the distribution network. This paper proposes a methodology to be used by Virtual Power Players (VPPs), regarding the energy resource scheduling in smart grids and considering day-ahead, hour-ahead and realtime time horizons. This method considers that energy resources are managed by a VPP which establishes contracts with their owners. The full AC power flow calculation included in the model takes into account network constraints. In this paper, distribution function errors are used to simulate variations between time horizons, and to measure the performance of the proposed methodology. A 33-bus distribution network with large number of distributed resources is used.
Resumo:
The use of appropriate acceptance criteria in the risk assessment process for occupational accidents is an important issue but often overlooked in the literature, particularly when new risk assessment methods are proposed and discussed. In most cases, there is no information on how or by whom they were defined, or even how companies can adapt them to their own circumstances. Bearing this in mind, this study analysed the problem of the definition of risk acceptance criteria for occupational settings, defining the quantitative acceptance criteria for the specific case study of the Portuguese furniture industrial sector. The key steps to be considered in formulating acceptance criteria were analysed in the literature review. By applying the identified steps, the acceptance criteria for the furniture industrial sector were then defined. The Cumulative Distribution Function (CDF) for the injury statistics of the industrial sector was identified as the maximum tolerable risk level. The acceptable threshold was defined by adjusting the CDF to the Occupational, Safety & Health (OSH) practitioners’ risk acceptance judgement. Adjustments of acceptance criteria to the companies’ safety cultures were exemplified by adjusting the Burr distribution parameters. An example of a risk matrix was also used to demonstrate the integration of the defined acceptance criteria into a risk metric. This work has provided substantial contributions to the issue of acceptance criteria for occupational accidents, which may be useful in overcoming the practical difficulties faced by authorities, companies and experts.
Resumo:
In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.
Resumo:
This paper presents a methodology that aims to increase the probability of delivering power to any load point of the electrical distribution system by identifying new investments in distribution components. The methodology is based on statistical failure and repair data of the distribution power system components and it uses fuzzy-probabilistic modelling for system component outage parameters. Fuzzy membership functions of system component outage parameters are obtained by statistical records. A mixed integer non-linear optimization technique is developed to identify adequate investments in distribution networks components that allow increasing the availability level for any customer in the distribution system at minimum cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a real distribution network.
Resumo:
Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation according to the smart grid paradigm. SCADA (Supervisory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. The paper includes a case study using a 114 bus distribution network and load demand based on real data.
Resumo:
Engineering Education includes not only teaching theoretical fundamental concepts but also its verification during practical lessons in laboratories. The usual strategies to carry out this action are frequently based on Problem Based Learning, starting from a given state and proceeding forward to a target state. The possibility or the effectiveness of this procedure depends on previous states and if the present state was caused or resulted from earlier ones. This often happens in engineering education when the achieved results do not match the desired ones, e.g. when programming code is being developed or when the cause of the wrong behavior of an electronic circuit is being identified. It is thus important to also prepare students to proceed in the reverse way, i.e. given a start state generate the explanation or even the principles that underlie it. Later on, this sort of skills will be important. For instance, to a doctor making a patient?s story or to an engineer discovering the source of a malfunction. This learning methodology presents pedagogical advantages besides the enhanced preparation of students to their future work. The work presented on his document describes an automation project developed by a group of students in an engineering polytechnic school laboratory. The main objective was to improve the performance of a Braille machine. However, in a scenario of Reverse Problem-Based learning, students had first to discover and characterize the entire machine's function before being allowed (and being able) to propose a solution for the existing problem.
Resumo:
Optimization methods have been used in many areas of knowledge, such as Engineering, Statistics, Chemistry, among others, to solve optimization problems. In many cases it is not possible to use derivative methods, due to the characteristics of the problem to be solved and/or its constraints, for example if the involved functions are non-smooth and/or their derivatives are not know. To solve this type of problems a Java based API has been implemented, which includes only derivative-free optimization methods, and that can be used to solve both constrained and unconstrained problems. For solving constrained problems, the classic Penalty and Barrier functions were included in the API. In this paper a new approach to Penalty and Barrier functions, based on Fuzzy Logic, is proposed. Two penalty functions, that impose a progressive penalization to solutions that violate the constraints, are discussed. The implemented functions impose a low penalization when the violation of the constraints is low and a heavy penalty when the violation is high. Numerical results, obtained using twenty-eight test problems, comparing the proposed Fuzzy Logic based functions to six of the classic Penalty and Barrier functions are presented. Considering the achieved results, it can be concluded that the proposed penalty functions besides being very robust also have a very good performance.
Resumo:
As technology advances not only do new standards and programming styles appear but also some of the previously established ones gain relevance. In a new Internet paradigm where interconnection between small devices is key to the development of new businesses and scientific advancement there is the need to find simple solutions that anyone can implement in order to allow ideas to become more than that, ideas. Open-source software is still alive and well, especially in the area of the Internet of Things. This opens windows for many low capital entrepreneurs to experiment with their ideas and actually develop prototypes, which can help identify problems with a project or shine light on possible new features and interactions. As programming becomes more and more popular between people of fields not related to software there is the need for guidance in developing something other than basic algorithms, which is where this thesis comes in: A comprehensive document explaining the challenges and available choices of developing a sensor data and message delivery system, which scales well and implements the delivery of critical messages. Modularity and extensibility were also given much importance, making this an affordable tool for anyone that wants to build a sensor network of the kind.