9 resultados para Differenzial Imaging, Principal Component Analysis, esopianeti, SPHERE, IFS
em Instituto Politécnico do Porto, Portugal
Resumo:
In the current context of serious climate changes, where the increase of the frequency of some extreme events occurrence can enhance the rate of periods prone to high intensity forest fires, the National Forest Authority often implements, in several Portuguese forest areas, a regular set of measures in order to control the amount of fuel mass availability (PNDFCI, 2008). In the present work we’ll present a preliminary analysis concerning the assessment of the consequences given by the implementation of prescribed fire measures to control the amount of fuel mass in soil recovery, in particular in terms of its water retention capacity, its organic matter content, pH and content of iron. This work is included in a larger study (Meira-Castro, 2009(a); Meira-Castro, 2009(b)). According to the established praxis on the data collection, embodied in multidimensional matrices of n columns (variables in analysis) by p lines (sampled areas at different depths), and also considering the quantitative data nature present in this study, we’ve chosen a methodological approach that considers the multivariate statistical analysis, in particular, the Principal Component Analysis (PCA ) (Góis, 2004). The experiments were carried out in a soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, NW Portugal, who was able to maintain itself intact from prescribed burnings from four years and was submit to prescribed fire in March 2008. The soils samples were collected from five different plots at six different time periods. The methodological option that was adopted have allowed us to identify the most relevant relational structures inside the n variables, the p samples and in two sets at the same time (Garcia-Pereira, 1990). Consequently, and in addition to the traditional outputs produced from the PCA, we have analyzed the influence of both sampling depths and geomorphological environments in the behavior of all variables involved.
Resumo:
The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response.With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.
Resumo:
Beyond the classical statistical approaches (determination of basic statistics, regression analysis, ANOVA, etc.) a new set of applications of different statistical techniques has increasingly gained relevance in the analysis, processing and interpretation of data concerning the characteristics of forest soils. This is possible to be seen in some of the recent publications in the context of Multivariate Statistics. These new methods require additional care that is not always included or refered in some approaches. In the particular case of geostatistical data applications it is necessary, besides to geo-reference all the data acquisition, to collect the samples in regular grids and in sufficient quantity so that the variograms can reflect the spatial distribution of soil properties in a representative manner. In the case of the great majority of Multivariate Statistics techniques (Principal Component Analysis, Correspondence Analysis, Cluster Analysis, etc.) despite the fact they do not require in most cases the assumption of normal distribution, they however need a proper and rigorous strategy for its utilization. In this work, some reflections about these methodologies and, in particular, about the main constraints that often occur during the information collecting process and about the various linking possibilities of these different techniques will be presented. At the end, illustrations of some particular cases of the applications of these statistical methods will also be presented.
Resumo:
Controlled fires in forest areas are frequently used in most Mediterranean countries as a preventive technique to avoid severe wildfires in summer season. In Portugal, this forest management method of fuel mass availability is also used and has shown to be beneficial as annual statistical reports confirm that the decrease of wildfires occurrence have a direct relationship with the controlled fire practice. However prescribed fire can have serious side effects in some forest soil properties. This work shows the changes that occurred in some forest soils properties after a prescribed fire action. The experiments were carried out in soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, Portugal, that had not been burn for four years. The composed soil samples were collected from five plots at three different layers (0-3cm, 3-6cm and 6-18cm) during a three-year monitoring period after the prescribed burning. Principal Component Analysis was used to reach the presented conclusions.
Resumo:
This study aims to optimize the water quality monitoring of a polluted watercourse (Leça River, Portugal) through the principal component analysis (PCA) and cluster analysis (CA). These statistical methodologies were applied to physicochemical, bacteriological and ecotoxicological data (with the marine bacterium Vibrio fischeri and the green alga Chlorella vulgaris) obtained with the analysis of water samples monthly collected at seven monitoring sites and during five campaigns (February, May, June, August, and September 2006). The results of some variables were assigned to water quality classes according to national guidelines. Chemical and bacteriological quality data led to classify Leça River water quality as “bad” or “very bad”. PCA and CA identified monitoring sites with similar pollution pattern, giving to site 1 (located in the upstream stretch of the river) a distinct feature from all other sampling sites downstream. Ecotoxicity results corroborated this classification thus revealing differences in space and time. The present study includes not only physical, chemical and bacteriological but also ecotoxicological parameters, which broadens new perspectives in river water characterization. Moreover, the application of PCA and CA is very useful to optimize water quality monitoring networks, defining the minimum number of sites and their location. Thus, these tools can support appropriate management decisions.
Resumo:
Prescribed fire is a common forest management tool used in Portugal to reduce the fuel load availability and minimize the occurrence of wildfires. In addition, the use of this technique also causes an impact to ecosystems. In this presentation we propose to illustrate some results of our project in two forest sites, both located in Northwest Portugal, where the effect of prescribed fire on soil properties were recorded during a period of 6 months. Changes in soil moisture, organic matter, soil pH and iron, were examined by Principal Component Analysis multivariate statistics technique in order to determine impact of prescribed fire on these soil properties in these two different types of soils and determine the period of time that these forest soils need to recover to their pre-fire conditions, if they can indeed recover. Although the time allocated to this study does not allow for a widespread conclusion, the data analysis clearly indicates that the pH values are positively correlated with iron values at both sites. In addition, geomorphologic differences between both sampling sites, Gramelas and Anjos, are relevant as the soils’ properties considered have shown different performances in time. The use of prescribed fire produced a lower impact in soils originated from more amended bedrock and therefore with a ticker humus covering (Gramelas) than in more rocky soils with less litter covering (Anjos) after six months after the prescribed fire occurrence.
Resumo:
The excessive use of pesticides and fertilisers in agriculture has generated a decrease in groundwater and surface water quality in many regions of the EU, constituting a hazard for human health and the environment. Besides, on-site sewage disposal is an important source of groundwater contamination in urban and peri-urban areas. The assessment of groundwater vulnerability to contamination is an important tool to fulfil the demands of EU Directives. The purpose of this study is to assess the groundwater vulnerability to contamination related mainly to agricultural activities in a peri-urban area (Vila do Conde, NW Portugal). The hydrogeological framework is characterised mainly by fissured granitic basement and sedimentary cover. Water samples were collected and analysed for temperature, pH, electrical conductivity, chloride, phosphate, nitrate and nitrite. An evaluation of groundwater vulnerability to contamination was applied (GOD-S, Pesticide DRASTIC-Fm, SINTACS and SI) and the potential nitrate contamination risk was assessed, both on a hydrogeological GIS-based mapping. A principal component analysis was performed to characterised patterns of relationship among groundwater contamination, vulnerability, and the hydrogeological setting assessed. Levels of nitrate above legislation limits were detected in 75 % of the samples analysed. Alluvia units showed the highest nitrate concentrations and also the highest vulnerability and risk. Nitrate contamination is a serious problem affecting groundwater, particularly shallow aquifers, especially due to agriculture activities, livestock and cesspools. GIS-based cartography provided an accurate way to improve knowledge on water circulation models and global functioning of local aquifer systems. Finally, this study highlights the adequacy of an integrated approach, combining hydrogeochemical data, vulnerability assessments and multivariate analysis, to understand groundwater processes in peri-urban areas.
Resumo:
Proceedings of the 13th International UFZ-Deltares Conference on Sustainable Use and Management of Soil, Sediment and Water Resources - 9–12 June 2015 • Copenhagen, Denmark
Resumo:
Este trabalho pretende estabelecer uma relação entre o Work Index e algumas propriedades das rochas. Através da pesquisa bibliográfica foram identificadas varias propriedades com possível influência no valor do Work Index, das quais foram seleccionadas a massa volúmica aparente, a resistência à carga pontual, a composição química, a composição mineralógica e a abrasividade. Adicionalmente a porosidade aberta e resistência à compressão também foram analisadas. Assim foram analisadas 10 amostras de rocha, quatro de granitos, uma de quartzodiorito, uma de ardósia, uma de serpentinito, uma de calcário, uma de mármore e uma de sienito nefelínico, sobre as quais já eram conhecidos os valores de cinco das propriedades referidas previamente, tendo sido determinados os valores das ainda desconhecidas, resistência à carga pontual e a abrasividade que está representada através do resultado do ensaio capon. Devido à dificuldade de execução do ensaio de determinação do Work Index de Bond foram recolhidos dados bibliográficos de valores do Work Index para as amostras de rocha seleccionadas e adoptado o valor médio para cada uma. Os dados obtidos foram tratados estatisticamente através do método de análise de componentes principais assim como através de regressões lineares simples e múltiplas. A análise de componentes principais permitiu identificar várias propriedades da rocha com possível influência sobre o Work Index de entre as analisadas. Foi possível estabelecer uma relação entre o Work Index e quatro das propriedades seleccionadas, designadamente a porosidade aberta, a resistência à compressão, a resistência à carga pontual e a abrasividade.