22 resultados para Dietas artificiais
em Instituto Politécnico do Porto, Portugal
Resumo:
A Lei de Potência é uma particularidade de um sistema não linear, revelando um sistema complexo próximo da auto-organização. Algumas características de sistemas naturais e artificiais, tais como dimensão populacional das cidades, valor dos rendimentos pessoais, frequência de ocorrência de palavras em textos e magnitude de sismos, seguem distribuições do tipo Lei de Potência. Estas distribuições indicam que pequenas ocorrências são muito comuns e grandes ocorrências são raras, podendo porém verificar-se com razoável probabilidade. A finalidade deste trabalho visa a identificação de fenómenos associados às Leis de Potência. Mostra-se o comportamento típico destes fenómenos, com os dados retirados dos vários casos de estudo e com a ajuda de uma meta-análise. As Leis de Potência em sistemas naturais e artificiais apresentam uma proximidade a um padrão, quando os valores são normalizados (frequências relativas) para dar origem a um meta-gráfico.
Resumo:
Numa Estação de Tratamento de Águas Residuais (ETAR), a otimização do processo de Digestão Anaeróbia (DA) é fundamental para o aumento da produção de biogás, que por sua vez é convertido em energia, essencial para a rentabilidade de exploração de ETAR. No entanto, a complexidade do processo de Digestão Anaeróbia das lamas constitui um obstáculo à sua otimização. Com este trabalho pretende-se efetuar a análise e tratamento de dados de Digestão Anaeróbia, com recurso a Redes Neuronais Artificiais (RNA), contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás. As Redes Neuronais Artificiais são modelos matemáticos computacionais inspirados no funcionamento do cérebro humano, com capacidade para entender relações complexas num determinado conjunto de dados, motivo por que se optou pela sua utilização na procura de soluções que permitem predizer o comportamento de uma DA. Para o desenvolvimento das RNA utilizou-se o programa NeuralToolsTM da PalisadeTM. Como caso de estudo, a metodologia foi aplicada ao Digestor A da ETAR Sul da SIMRIA, empresa onde teve lugar o estágio curricular que originou o presente trabalho. Nesse contexto, utilizaram-se dados com informação referente aos últimos dois anos de funcionamento do digestor, disponíveis na empresa. Apesar de se terem verificado certas limitações, na predição em alguns casos particulares, de um modo geral, considera-se que os resultados obtidos permitiram concluir que as redes neuronais modeladas apresentam boa capacidade de generalização na imitação do processo anaeróbio. Conclui-se, portanto, que o estudo realizado pode constituir um contributo com interesse para a otimização da produção do biogás na DA de ETAR Sul da SIMRIA e que a utilização de RNA poderá ser uma ferramenta a explorar, quer nessa área, quer noutras áreas de gestão de sistemas de saneamento básico.
Resumo:
Mestrado em engenharia electrotécnica e de computadores - Área de Especialização de Sistemas Autónomos
Resumo:
Numa Estação de Tratamento de Águas Residuais (ETAR), são elevados os custos não só de tratamento das águas residuais como também de manutenção dos equipamentos lá existentes, nesse sentido procura-se utilizar processos capazes de transformar os resíduos em produtos úteis. A Digestão Anaeróbia (DA) é um processo atualmente disponível capaz de contribuir para a redução da poluição ambiental e ao mesmo tempo de valorizar os subprodutos gerados. Durante o processo de DA é produzido um gás, o biogás, que pode ser utilizado como fonte de energia, reduzindo assim a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás, mas a complexidade do processo constitui um obstáculo à sua otimização. Neste trabalho, aplicaram-se Redes Neuronais Artificiais (RNA) ao processo de DA de lamas de ETAR. RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás no digestor I da ETAR Norte da SIMRIA, usando o programa NeuralToolsTM da PalisadeTM para desenvolvimento das RNA. Para tal, efetuou-se uma análise e tratamento de dados referentes aos últimos quatro anos de funcionamento do digestor. Os resultados obtidos permitiram concluir que as RNA modeladas apresentam boa capacidade de generalização do processo de DA. Considera-se que este caso de estudo é promissor, fornecendo uma boa base para o desenvolvimento de modelos eventualmente mais gerais de RNA que, aplicado conjuntamente com as características de funcionamento de um digestor e o processo de DA, permitirá otimizar a produção de biogás em ETAR.
Resumo:
Numa sociedade com elevado consumo energético, a dependência de combustíveis fósseis em evidente diminuição de disponibilidades é um tema cada vez mais preocupante, assim como a poluição atmosférica resultante da sua utilização. Existe, portanto, uma necessidade crescente de recorrer a energias renováveis e promover a otimização e utilização de recursos. A digestão anaeróbia (DA) de lamas é um processo de estabilização de lamas utilizado nas Estações de Tratamento de Águas Residuais (ETAR) e tem, como produtos finais, a lama digerida e o biogás. Maioritariamente constituído por gás metano, o biogás pode ser utilizado como fonte de energia, reduzindo, deste modo, a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás. No presente relatório de estágio, as Redes Neuronais Artificiais (RNA) foram aplicadas ao processo de DA de lamas de ETAR. As RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Uma vez que as DA são um processo bastante complexo, a sua otimização apresenta diversas dificuldades. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás nos digestores das ETAR de Espinho e de Ílhavo da AdCL, utilizando o software NeuralToolsTM da PalisadeTM, contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás.
Resumo:
Os doentes com diabetes mellitus tipo 2 apresentam predisposição para a retenção de sódio e são frequentemente hipertensos. No entanto, os mecanismos implicados na dificuldade do rim diabético em mobilizar o sódio são, ainda, pouco compreendidos. Os peptídeos da família das guanilinas estão envolvidos na regulação do transporte de electrólitos e água nos epitélios intestinal e renal, através da activação do receptor guanilato ciclase-C (GC-C) e subsequente libertação intracelular de GMPc. O objectivo do presente estudo foi a avaliação da actividade do sistema dos peptídeos das guanilinas (SPG) e do seu papel na regulação do balanço de sódio num modelo animal de diabetes tipo 2. Ratinhos machos C57BL/6 foram submetidos a uma dieta com alto teor de gordura e rica em hidratos de carbono simples (ratinhos diabéticos) ou a uma dieta normal (ratinhos controlo). A expressão renal e intestinal da guanilina (GN), uroguanilina (UGN) e do receptor GC-C assim como os níveis de GMPc na urina e plasma foram avaliados nos ratinhos controlo e diabéticos, durante a ingestão de dietas normo (NS) e hiper-salina (HS). Nos ratinhos diabéticos, durante a dieta NS verificou-se um aumento significativo da pressão arterial que foi acompanhado de redução da expressão do ARNm da GN, UGN e do GC-C no intestino e de aumento da expressão de ARNm da UGN no rim. A dieta HS induziu um aumento da expressão do ARNm da UGN no jejuno dos ratinhos controlo mas não nos diabéticos. Os ratinhos diabéticos apresentaram níveis urinários de GMPc inferiores aos controlos, em condições de dieta NS. Em conclusão, os nossos resultados sugerem que na diabetes tipo 2 ocorre uma redução da actividade intestinal do SPG que é acompanhada por um aumento compensatório da actividade renal do SPG. A diminuição da actividade do SPG intestinal na diabetes tipo 2 deve-se não só a uma redução da expressão dos peptídeos GN e UGN, mas também a uma redução da expressão do seu receptor, GC-C. Estes resultados sugerem que o SPG pode contribuir para a sensibilidade ao sódio na diabetes.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
O presente trabalho pretendeu desenvolver e testar um sensor óptico para detectar ciclamato de sódio, um adoçante artificial utilizado nas bebidas em geral. A primeira abordagem neste sentido baseou-se na preparação de um sensor óptico através da formação de complexos corados entre o ciclamato e várias espécies metálicas, nomeadamente Hg(II), Ba(II), Fe(II), Ag(II), Pb(II), Cd(II), Mn (II), Ni(II), Cu(II), Co(II), Sn(II) e Mg(II). Perante a ausência de resultados satisfatórios optou-se por explorar a acção do ciclamato de sódio na transferência/partilha de um corante entre duas fases líquidas imiscíveis. As fases líquidas utilizadas foram a água e o clorofórmio. Testaram-se várias famílias de corantes mas só uma classe se mostrou com as características apropriadas para o objectivo pretendido. Dentro dessa família de corantes, seleccionou-se aquele que, à partida, garantiu o melhor desempenho. O sensor foi testado em diferentes condições de pH e também na presença de potenciais interferentes de forma a estabelecer as melhores condições de utilização. O método mostrou-se bastante simples de executar, rápido na obtenção de resultados e com boas características para ser avaliado visualmente, mas sempre de acordo com os critérios de objectividade que um trabalho deste tipo requer. Além o disso permitiu ser calibrado de uma forma rápida e simples, características essenciais para a aplicação deste método na despistagem de ciclamato em análises de rotina. O método desenvolvido foi ainda aplicado à análise de vinho dopado com diferentes concentrações de ciclamato de sódio. Destes testes verificou-se a necessidade de optimização do método através da introdução de outras substâncias na fase não aquosa diminuindo a vulnerabilidade do sensor a outros interferentes. Como conclusão, o método correspondeu às expectativas, mostrando-se viável para aplicação à análise de vinhos, ainda com uma margem significativa de desenvolvimento no sentido de o tornar mais fiável e preciso.
Resumo:
Mestrado em Computação e Instrumentação Médica
Resumo:
Neste trabalho pretende-se introduzir os conceitos associados às redes neuronais e a sua aplicação no controlo de sistemas, neste caso na área da robótica autónoma. Foi utilizado um AGV de modo a testar experimentalmente um controlo através de uma rede neuronal artificial. A grande vantagem das redes neuronais artificiais é estas poderem ser ensinadas a funcionarem como se pretende. A partir desta caraterística foram efetuadas duas abordagens na implementação do AGV disponibilizado. A primeira abordagem ensinava a rede neuronal a funcionar como o controlo por lógica difusa que foi implementado no AGV aquando do seu desenvolvimento. A segunda abordagem foi ensinar a rede neuronal artificial a funcionar a partir de dados retirados de um controlo remoto simples implementado no AGV. Ambas as abordagens foram inicialmente implementadas e simuladas no MATLAB, antes de se efetuar a sua implementação no AGV. O MATLAB é utilizado para efetuar o treino das redes neuronais multicamada proactivas através do algoritmo de treino por retropropagação de Levenberg-Marquardt. A implementação de uma rede neuronal artificial na primeira abordagem foi implementada em três fases, MATLAB, posteriormente linguagem de programação C no computador e por fim, microcontrolador PIC no AGV, permitindo assim diferenciar o desenvolvimento destas técnicas em várias plataformas. Durante o desenvolvimento da segunda abordagem foi desenvolvido uma aplicação Android que permite monitorizar e controlar o AGV remotamente. Os resultados obtidos pela implementação da rede neuronal a partir do controlo difuso e do controlo remoto foram satisfatórios, pois o AGV percorria os percursos testados corretamente, em ambos os casos. Por fim concluiu-se que é viável a aplicação das redes neuronais no controlo de um AGV. Mais ainda, é possível utilizar o sistema desenvolvido para implementar e testar novas RNA.
Resumo:
Fuzzy logic controllers (FLC) are intelligent systems, based on heuristic knowledge, that have been largely applied in numerous areas of everyday life. They can be used to describe a linear or nonlinear system and are suitable when a real system is not known or too difficult to find their model. FLC provide a formal methodology for representing, manipulating and implementing a human heuristic knowledge on how to control a system. These controllers can be seen as artificial decision makers that operate in a closed-loop system, in real time. The main aim of this work was to develop a single optimal fuzzy controller, easily adaptable to a wide range of systems – simple to complex, linear to nonlinear – and able to control all these systems. Due to their efficiency in searching and finding optimal solution for high complexity problems, GAs were used to perform the FLC tuning by finding the best parameters to obtain the best responses. The work was performed using the MATLAB/SIMULINK software. This is a very useful tool that provides an easy way to test and analyse the FLC, the PID and the GAs in the same environment. Therefore, it was proposed a Fuzzy PID controller (FL-PID) type namely, the Fuzzy PD+I. For that, the controller was compared with the classical PID controller tuned with, the heuristic Ziegler-Nichols tuning method, the optimal Zhuang-Atherton tuning method and the GA method itself. The IAE, ISE, ITAE and ITSE criteria, used as the GA fitness functions, were applied to compare the controllers performance used in this work. Overall, and for most systems, the FL-PID results tuned with GAs were very satisfactory. Moreover, in some cases the results were substantially better than for the other PID controllers. The best system responses were obtained with the IAE and ITAE criteria used to tune the FL-PID and PID controllers.
Resumo:
As Leis de Potência, LP, (Power Laws, em inglês), Leis de Pareto ou Leis de Zipf são distribuições estatísticas, com inúmeras aplicações práticas, em sistemas naturais e artificiais. Alguns exemplos são a variação dos rendimentos pessoais ou de empresas, a ocorrência de palavras em textos, as repetições de sons ou conjuntos de sons em composições musicais, o número de vítimas em guerras ou outros cataclismos, a magnitude de tremores de terra, o número de vendas de livros ou CD’s na internet, o número de sítios mais acedidos na Internet, entre muitos outros. Vilfredo Pareto (1897-1906) afirma, no manual de economia política “Cours d’Economie Politique”, que grande parte da economia mundial segue uma determinada distribuição, em que 20% da população reúne 80% da riqueza total do país, estando, assim uma pequena fração da sociedade a controlar a maior fatia do dinheiro. Isto resume o comportamento de uma variável que segue uma distribuição de Pareto (ou Lei de Potência). Neste trabalho pretende-se estudar em pormenor a aplicação das leis de potência a fenómenos da internet, como sendo o número de sítios mais visitados, o número de links existentes em determinado sítio, a distribuição de nós numa rede da internet, o número livros vendidos e as vendas em leilões online. Os resultados obtidos permitem-nos concluir que todos os dados estudados são bem aproximados, numa escala logarítmica, por uma reta com declive negativo, seguindo, assim, uma distribuição de Pareto. O desenvolvimento e crescimento da Web, tem proporcionado um aumento do número dos utilizadores, conteúdos e dos sítios. Grande parte dos exemplos presentes neste trabalho serão alvo de novos estudos e de novas conclusões. O fato da internet ter um papel preponderante nas sociedades modernas, faz com que esteja em constante evolução e cada vez mais seja possível apresentar fenómenos na internet associados Lei de Potência.
Resumo:
Os avanços nas Interfaces Cérebro-máquina, resultantes dos avanços no tratamento de sinal e da inteligência artificial, estão a permitir-nos aceder à atividade cerebral, descodificá-la, e usála para comandar dispositivos, sejam eles braços artificiais ou computadores. Isto é muito mais importante quando os utilizadores são pessoas que perderam a capacidade de comunicar, embora mantenham as suas capacidades cognitivas intactas. O caso mais extremo desta situação é o das pessoas afetadas pela Síndrome de Encarceramento. Este trabalho pretende contribuir para a melhoria da qualidade de vida das pessoas afetadas por esta síndrome, disponibilizando-lhes um meio de comunicação adaptado às suas limitações. É essencialmente um estudo de usabilidade aplicada a um tipo de utilizador extremamente diminuído na sua capacidade de interação. Nesta investigação começamos por compreender a Síndrome de Encarceramento e as limitações e capacidades das pessoas afetadas por ela. Abordamos a neuroplasticidade, o que é, e em que medida é importante para a utilização das Interfaces Cérebro-máquina. Analisamos o funcionamento destas interfaces, e os fundamentos científicos que o suportam. Finalmente, com todo este conhecimento em mãos, investigamos e desenvolvemos métodos que nos permitissem otimizar as limitadas capacidades do utilizador na sua interação com o sistema, minimizando o esforço e maximizando o desempenho. Foi para o efeito desenhado e implementado um protótipo que nos permitisse validar as soluções encontradas.
Resumo:
Mestrado em Engenharia Eletrotécnica e de Computadores - Área de Especialização de Sistemas e Planeamento Industrial