9 resultados para Dependency parsing
em Instituto Politécnico do Porto, Portugal
Resumo:
Electric vehicles introduction will affect cities environment and urban mobility policies. Network system operators will have to consider the electric vehicles in planning and operation activities due to electric vehicles’ dependency on the electricity grid. The present paper presents test cases using an Electric Vehicle Scenario Simulator (EVeSSi) being developed by the authors. The test cases include two scenarios considering a 33 bus network with up to 2000 electric vehicles in the urban area. The scenarios consider a penetration of 10% of electric vehicles (200 of 2000), 30% (600) and 100% (2000). The first scenario will evaluate network impacts and the second scenario will evaluate CO2 emissions and fuel consumption.
Resumo:
To comply with natural gas demand growth patterns and Europe´s import dependency, the gas industry needs to organize an efficient upstream infrastructure. The best location of Gas Supply Units – GSUs and the alternative transportation mode – by phisical or virtual pipelines, are the key of a successful industry. In this work we study the optimal location of GSUs, as well as determining the most efficient allocation from gas loads to sources, selecting the best transportation mode, observing specific technical restrictions and minimizing system total costs. For the location of GSUs on system we use the P-median problem, for assigning gas demands nodes to source facilities we use the classical transportation problem. The developed model is an optimisation-based approach, based on a Lagrangean heuristic, using Lagrangean relaxation for P-median problems – Simple Lagrangean Heuristic. The solution of this heuristic can be improved by adding a local search procedure - the Lagrangean Reallocation Heuristic. These two heuristics, Simple Lagrangean and Lagrangean Reallocation, were tested on a realistic network - the primary Iberian natural gas network, organized with 65 nodes, connected by physical and virtual pipelines. Computational results are presented for both approaches, showing the location gas sources and allocation loads arrangement, system total costs and gas transportation mode.
Resumo:
Dissertação de Mestrado apresentado ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Empreendedorismo e Internacionalização, sob orientação de Maria Clara Dias Pinto Ribeiro
Resumo:
In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.
Resumo:
The recent developments on Hidden Markov Models (HMM) based speech synthesis showed that this is a promising technology fully capable of competing with other established techniques. However some issues still lack a solution. Several authors report an over-smoothing phenomenon on both time and frequencies which decreases naturalness and sometimes intelligibility. In this work we present a new vowel intelligibility enhancement algorithm that uses a discrete Kalman filter (DKF) for tracking frame based parameters. The inter-frame correlations are modelled by an autoregressive structure which provides an underlying time frame dependency and can improve time-frequency resolution. The system’s performance has been evaluated using objective and subjective tests and the proposed methodology has led to improved results.
Resumo:
In this work an adaptive filtering scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for Hidden Markov Model (HMM) based speech synthesis quality enhancement. The objective is to improve signal smoothness across HMMs and their related states and to reduce artifacts due to acoustic model's limitations. Both speech and artifacts are modelled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. Themodel parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The quality enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. The system's performance has been evaluated using mean opinion score tests and the proposed technique has led to improved results.
Resumo:
Dissertação de Mestrado apresentada ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Assessoria de Administração, sob orientação da Professora Doutora Raquel Susana da Costa Pereira
Resumo:
A crescente necessidade de reduzir a dependência energética e a emissão de gases de efeito de estufa levou à adoção de uma série de políticas a nível europeu com vista a aumentar a eficiência energética e nível de controlo de equipamentos, reduzir o consumo e aumentar a percentagem de energia produzida a partir de fontes renováveis. Estas medidas levaram ao desenvolvimento de duas situações críticas para o setor elétrico: a substituição das cargas lineares tradicionais, pouco eficientes, por cargas não-lineares mais eficientes e o aparecimento da produção distribuída de energia a partir de fontes renováveis. Embora apresentem vantagens bem documentadas, ambas as situações podem afetar negativamente a qualidade de energia elétrica na rede de distribuição, principalmente na rede de baixa tensão onde é feita a ligação com a maior parte dos clientes e onde se encontram as cargas não-lineares e a ligação às fontes de energia descentralizadas. Isto significa que a monitorização da qualidade de energia tem, atualmente, uma importância acrescida devido aos custos relacionados com perdas inerentes à falta de qualidade de energia elétrica na rede e à necessidade de verificar que determinados parâmetros relacionados com a qualidade de energia elétrica se encontram dentro dos limites previstos nas normas e nos contratos com clientes de forma a evitar disputas ou reclamações. Neste sentido, a rede de distribuição tem vindo a sofrer alterações a nível das subestações e dos postos de transformação que visam aumentar a visibilidade da qualidade de energia na rede em tempo real. No entanto, estas medidas só permitem monitorizar a qualidade de energia até aos postos de transformação de média para baixa tensão, não revelando o estado real da qualidade de energia nos pontos de entrega ao cliente. A monitorização nestes pontos é feita periodicamente e não em tempo real, ficando aquém do necessário para assegurar a deteção correta de problemas de qualidade de energia no lado do consumidor. De facto, a metodologia de monitorização utilizada atualmente envolve o envio de técnicos ao local onde surgiu uma reclamação ou a um ponto de medição previsto para instalar um analisador de energia que permanece na instalação durante um determinado período de tempo. Este tipo de monitorização à posteriori impossibilita desde logo a deteção do problema de qualidade de energia que levou à reclamação, caso não se trate de um problema contínuo. Na melhor situação, o aparelho poderá detetar uma réplica do evento, mas a larga percentagem anomalias ficam fora deste processo por serem extemporâneas. De facto, para detetar o evento que deu origem ao problema é necessário monitorizar permanentemente a qualidade de energia. No entanto este método de monitorização implica a instalação permanente de equipamentos e não é viável do ponto de vista das empresas de distribuição de energia já que os equipamentos têm custos demasiado elevados e implicam a necessidade de espaços maiores nos pontos de entrega para conter os equipamentos e o contador elétrico. Uma alternativa possível que pode tornar viável a monitorização permanente da qualidade de energia consiste na introdução de uma funcionalidade de monitorização nos contadores de energia de determinados pontos da rede de distribuição. Os contadores são obrigatórios em todas as instalações ligadas à rede, para efeitos de faturação. Tradicionalmente estes contadores são eletromecânicos e recentemente começaram a ser substituídos por contadores inteligentes (smart meters), de natureza eletrónica, que para além de fazer a contagem de energia permitem a recolha de informação sobre outros parâmetros e aplicação de uma serie de funcionalidades pelo operador de rede de distribuição devido às suas capacidades de comunicação. A reutilização deste equipamento com finalidade de analisar a qualidade da energia junto dos pontos de entrega surge assim como uma forma privilegiada dado que se trata essencialmente de explorar algumas das suas características adicionais. Este trabalho tem como objetivo analisar a possibilidade descrita de monitorizar a qualidade de energia elétrica de forma permanente no ponto de entrega ao cliente através da utilização do contador elétrico do mesmo e elaborar um conjunto de requisitos para o contador tendo em conta a normalização aplicável, as características dos equipamentos utilizados atualmente pelo operador de rede e as necessidades do sistema elétrico relativamente à monitorização de qualidade de energia.
Resumo:
Numa sociedade com elevado consumo energético, a dependência de combustíveis fósseis em evidente diminuição de disponibilidades é um tema cada vez mais preocupante, assim como a poluição atmosférica resultante da sua utilização. Existe, portanto, uma necessidade crescente de recorrer a energias renováveis e promover a otimização e utilização de recursos. A digestão anaeróbia (DA) de lamas é um processo de estabilização de lamas utilizado nas Estações de Tratamento de Águas Residuais (ETAR) e tem, como produtos finais, a lama digerida e o biogás. Maioritariamente constituído por gás metano, o biogás pode ser utilizado como fonte de energia, reduzindo, deste modo, a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás. No presente relatório de estágio, as Redes Neuronais Artificiais (RNA) foram aplicadas ao processo de DA de lamas de ETAR. As RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Uma vez que as DA são um processo bastante complexo, a sua otimização apresenta diversas dificuldades. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás nos digestores das ETAR de Espinho e de Ílhavo da AdCL, utilizando o software NeuralToolsTM da PalisadeTM, contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás.