11 resultados para Defeitos do Tubo Neural

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an artificial neural network applied to the forecasting of electricity market prices, with the special feature of being dynamic. The dynamism is verified at two different levels. The first level is characterized as a re-training of the network in every iteration, so that the artificial neural network can able to consider the most recent data at all times, and constantly adapt itself to the most recent happenings. The second level considers the adaptation of the neural network’s execution time depending on the circumstances of its use. The execution time adaptation is performed through the automatic adjustment of the amount of data considered for training the network. This is an advantageous and indispensable feature for this neural network’s integration in ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to the market negotiating players of MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power Systems (PS), have been affected by substantial penetration of Distributed Generation (DG) and the operation in competitive environments. The future PS will have to deal with large-scale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. Virtual power players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. This paper proposes an artificial neural network (ANN) based methodology to support VPP resource schedule. The trained network is able to achieve good schedule results requiring modest computational means. A real data test case is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ancillary services represent a good business opportunity that must be considered by market players. This paper presents a new methodology for ancillary services market dispatch. The method considers the bids submitted to the market and includes a market clearing mechanism based on deterministic optimization. An Artificial Neural Network is used for day-ahead prediction of Regulation Down, regulation-up, Spin Reserve and Non-Spin Reserve requirements. Two test cases based on California Independent System Operator data concerning dispatch of Regulation Down, Regulation Up, Spin Reserve and Non-Spin Reserve services are included in this paper to illustrate the application of the proposed method: (1) dispatch considering simple bids; (2) dispatch considering complex bids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The non-technical loss is not a problem with trivial solution or regional character and its minimization represents the guarantee of investments in product quality and maintenance of power systems, introduced by a competitive environment after the period of privatization in the national scene. In this paper, we show how to improve the training phase of a neural network-based classifier using a recently proposed meta-heuristic technique called Charged System Search, which is based on the interactions between electrically charged particles. The experiments were carried out in the context of non-technical loss in power distribution systems in a dataset obtained from a Brazilian electrical power company, and have demonstrated the robustness of the proposed technique against with several others natureinspired optimization techniques for training neural networks. Thus, it is possible to improve some applications on Smart Grids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The restructuring of electricity markets, conducted to increase the competition in this sector, and decrease the electricity prices, brought with it an enormous increase in the complexity of the considered mechanisms. The electricity market became a complex and unpredictable environment, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. Software tools became, therefore, essential to provide simulation and decision support capabilities, in order to potentiate the involved players’ actions. This paper presents the development of a metalearner, applied to the decision support of electricity markets’ negotiation entities. The proposed metalearner executes a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms implemented in ALBidS, an adaptive learning system that provides decision support to electricity markets’ players. The proposed metalearner considers different weights for each strategy, depending on its individual quality of performance. The results of the proposed method are studied and analyzed in scenarios based on real electricity markets’ data, using MASCEM - a multi-agent electricity market simulator that simulates market players’ operation in the market.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article aims to apply the concepts associated with artificial neural networks (ANN) in the control of an autonomous robot system that is intended to be used in competitions of robots. The robot was tested in several arbitrary paths in order to verify its effectiveness. The results show that the robot performed the tasks with success. Moreover, in the case of arbitrary paths the ANN control outperforms other methodologies, such as fuzzy logic control (FLC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Face à atual crise económica, cada vez mais as empresas procuram ganhar vantagens competitivas através da implementação da sua melhoria contínua. Uma das vertentes deste processo consiste na melhoria da gestão de stocks. O presente trabalho tem como objetivo o desenvolvimento de um projeto que visa a melhoria do sistema de gestão de stocks da FUTE – Fábrica de Utilidades de Tubo, SA. A principal motivação para o desenvolvimento deste trabalho teve como base as lacunas e falhas constatadas num departamento que é crítico para o desenvolvimento de todo o processo produtivo. O trabalho envolveu a utilização de modelos de gestão de stocks o que fez com que, através de cálculos efetuados, diminuísse o risco de rutura de materiais. Além disso, envolveu as várias etapas da técnica dos 5S’s, bem como a Gestão Visual garantindo, assim, os locais arrumados, limpos, seguros e devidamente identificados. Estas técnicas foram aplicadas em diferentes locais da empresa e, após essa implementação, verificou-se, por parte dos trabalhadores, uma redução de tempos no que toca à procura e identificação de materiais necessários para a linha de montagem. Essa redução de tempos foi também sentida por parte do responsável pelos stocks pois, com estas alterações, os materiais ficam mais acessíveis e mais fáceis de identificar aquando da sua verificação. Os resultados alcançados traduziram-se num aumento dos níveis de produtividade e qualidade, bem como um aumento da satisfação dos trabalhadores, que se traduz numa alteração de mentalidades e comportamentos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A necessidade de utilizar métodos de ligação entre componentes de forma mais rápida, eficaz e com melhores resultados tem causado a crescente utilização das juntas adesivas, em detrimento dos métodos tradicionais de ligação. A utilização das juntas adesivas tem vindo a aumentar em diversas aplicações industriais por estas apresentarem vantagens, das quais se destacam a redução de peso, redução de concentrações de tensões e facilidade de fabrico. No entanto, uma das limitações das juntas adesivas é a dificuldade em prever a resistência da junta após fabrico e durante a sua vida útil devido à presença de defeitos no adesivo. Os defeitos são normalmente gerados pela preparação inadequada das juntas ou degradação do adesivo devido ao ambiente (por exemplo, humidade), reduzindo a qualidade da ligação e influenciando a resistência da junta. Neste trabalho é apresentado um estudo experimental e numérico de juntas de sobreposição simples (JSS) com a inclusão de defeitos centrados na camada de adesivo para comprimentos de sobreposição (LO) diferentes. Os adesivos utilizados foram o Araldite® AV138, apresentado como sendo frágil, e o adesivo Sikaforce® 7752, intitulado como adesivo dúctil. A parte experimental consistiu no ensaio à tração das diferentes JSS permitindo a obtenção das curvas força-deslocamento (P-δ). A análise numérica por modelos de dano coesivo (MDC) foi realizada para analisar as tensões de arrancamento ((σy) e as tensões de corte (τxy) na camada adesiva, para estudar a variável de dano do MDC durante o processo de rotura e para avaliar a capacidade dos MDC na previsão da resistência da junta. Constatou-se um efeito significativo dos defeitos de diferentes dimensões na resistência das juntas, que também depende do tipo de adesivo utilizado e do valor de LO. Os modelos numéricos permitiram a descrição detalhada do comportamento das juntas e previsão de resistência, embora para o adesivo dúctil a utilização de uma lei coesiva triangular tenha provocado alguma discrepância relativamente aos resultados experimentais.