49 resultados para Content Based Image Retrieval (CBIR)
em Instituto Politécnico do Porto, Portugal
Resumo:
The aim of this article is to show how it is possible to integrate stories and ICT in Content Language Integrated Learning (CLIL) for English as a foreign language (EFL) learning in bilingual schools. Two Units of Work are presented. One, for the second year of Primary, is based on a Science topic, ‘Materials’. The story used is ‘The three little pigs’ and the computer program ‘JClic’. The other one is based on a Science and Arts topic for the sixth year of Primary, the story used is ‘Charlotte’s Web’ and the computer program ‘Atenex’.
Resumo:
The increasing number of television channels, on-demand services and online content, is expected to contribute to a better quality of experience for a costumer of such a service. However, the lack of efficient methods for finding the right content, adapted to personal interests, may lead to a progressive loss of clients. In such a scenario, recommendation systems are seen as a tool that can fill this gap and contribute to the loyalty of users. Multimedia content, namely films and television programmes are usually described using a set of metadata elements that include the title, a genre, the date of production, and the list of directors and actors. This paper provides a deep study on how the use of different metadata elements can contribute to increase the quality of the recommendations suggested. The analysis is conducted using Netflix and Movielens datasets and aspects such as the granularity of the descriptions, the accuracy metric used and the sparsity of the data are taken into account. Comparisons with collaborative approaches are also presented.
Resumo:
High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.
Resumo:
Phenylketonuria is an inborn error of metabolism, involving, in most cases, a deficient activity of phenylalanine hydroxylase. Neonatal diagnosis and a prompt special diet (low phenylalanine and natural-protein restricted diets) are essential to the treatment. The lack of data concerning phenylalanine contents of processed foodstuffs is an additional limitation for an already very restrictive diet. Our goals were to quantify protein (Kjeldahl method) and amino acid (18) content (HPLC/fluorescence) in 16 dishes specifically conceived for phenylketonuric patients, and compare the most relevant results with those of several international food composition databases. As might be expected, all the meals contained low protein levels (0.67–3.15 g/100 g) with the highest ones occurring in boiled rice and potatoes. These foods also contained the highest amounts of phenylalanine (158.51 and 62.65 mg/100 g, respectively). In contrast to the other amino acids, it was possible to predict phenylalanine content based on protein alone. Slight deviations were observed when comparing results with the different food composition databases.
Resumo:
Near real time media content personalisation is nowadays a major challenge involving media content sources, distributors and viewers. This paper describes an approach to seamless recommendation, negotiation and transaction of personalised media content. It adopts an integrated view of the problem by proposing, on the business-to-business (B2B) side, a brokerage platform to negotiate the media items on behalf of the media content distributors and sources, providing viewers, on the business-to-consumer (B2C) side, with a personalised electronic programme guide (EPG) containing the set of recommended items after negotiation. In this setup, when a viewer connects, the distributor looks up and invites sources to negotiate the contents of the viewer personal EPG. The proposed multi-agent brokerage platform is structured in four layers, modelling the registration, service agreement, partner lookup, invitation as well as item recommendation, negotiation and transaction stages of the B2B processes. The recommendation service is a rule-based switch hybrid filter, including six collaborative and two content-based filters. The rule-based system selects, at runtime, the filter(s) to apply as well as the final set of recommendations to present. The filter selection is based on the data available, ranging from the history of items watched to the ratings and/or tags assigned to the items by the viewer. Additionally, this module implements (i) a novel item stereotype to represent newly arrived items, (ii) a standard user stereotype for new users, (iii) a novel passive user tag cloud stereotype for socially passive users, and (iv) a new content-based filter named the collinearity and proximity similarity (CPS). At the end of the paper, we present off-line results and a case study describing how the recommendation service works. The proposed system provides, to our knowledge, an excellent holistic solution to the problem of recommending multimedia contents.
Resumo:
Near real time media content personalisation is nowadays a major challenge involving media content sources, distributors and viewers. This paper describes an approach to seamless recommendation, negotiation and transaction of personalised media content. It adopts an integrated view of the problem by proposing, on the business-to-business (B2B) side, a brokerage platform to negotiate the media items on behalf of the media content distributors and sources, providing viewers, on the business-to-consumer (B2C) side, with a personalised electronic programme guide (EPG) containing the set of recommended items after negotiation. In this setup, when a viewer connects, the distributor looks up and invites sources to negotiate the contents of the viewer personal EPG. The proposed multi-agent brokerage platform is structured in four layers, modelling the registration, service agreement, partner lookup, invitation as well as item recommendation, negotiation and transaction stages of the B2B processes. The recommendation service is a rule-based switch hybrid filter, including six collaborative and two content-based filters. The rule-based system selects, at runtime, the filter(s) to apply as well as the final set of recommendations to present. The filter selection is based on the data available, ranging from the history of items watched to the ratings and/or tags assigned to the items by the viewer. Additionally, this module implements (i) a novel item stereotype to represent newly arrived items, (ii) a standard user stereotype for new users, (iii) a novel passive user tag cloud stereotype for socially passive users, and (iv) a new content-based filter named the collinearity and proximity similarity (CPS). At the end of the paper, we present off-line results and a case study describing how the recommendation service works. The proposed system provides, to our knowledge, an excellent holistic solution to the problem of recommending multimedia contents.
Resumo:
he expansion of Digital Television and the convergence between conventional broadcasting and television over IP contributed to the gradual increase of the number of available channels and on demand video content. Moreover, the dissemination of the use of mobile devices like laptops, smartphones and tablets on everyday activities resulted in a shift of the traditional television viewing paradigm from the couch to everywhere, anytime from any device. Although this new scenario enables a great improvement in viewing experiences, it also brings new challenges given the overload of information that the viewer faces. Recommendation systems stand out as a possible solution to help a watcher on the selection of the content that best fits his/her preferences. This paper describes a web based system that helps the user navigating on broadcasted and online television content by implementing recommendations based on collaborative and content based filtering. The algorithms developed estimate the similarity between items and users and predict the rating that a user would assign to a particular item (television program, movie, etc.). To enable interoperability between different systems, programs characteristics (title, genre, actors, etc.) are stored according to the TV-Anytime standard. The set of recommendations produced are presented through a Web Application that allows the user to interact with the system based on the obtained recommendations.
Resumo:
Atualmente, os guias turísticos são constituídos por diversos módulos, nomeadamente, módulos de recomendação e de modelação do utilizador. Estes ajudam a adaptar melhor as recomendações dadas ao utilizador de acordo com as suas preferências. A necessidade de adaptar os guias turísticos às possíveis necessidades de saúde do utilizador, foi a motivação para a realização desta dissertação. Quando alguém visita um local desconhecido, considera normalmente as condições tanto de alojamento como de alimentação desse local. Contudo, se por algum motivo, necessita de cuidados de saúde, essa pessoa não se encontra preparada para isso. Assim, a recomendação de uma instituição de saúde direcionada para o turista é uma solução possível para o problema encontrado. Pretendeu-se desenvolver um módulo de recomendação híbrido no âmbito da prestação de informações relacionadas com as possíveis necessidades de saúde do turista, tendo em conta o seu perfil. Para a sua implementação seguiu-se a abordagem baseada em conteúdo e técnicas de classificação das instituições de saúde a recomendar ao utilizador. O protótipo desenvolvido foi testado com alguns utilizadores em termos de funcionalidades. Finalmente, pretende-se que o protótipo seja testado com mais utilizadores, possuidores de diversas características em termos de condições de mobilidade, historial clínico e necessidades. Estes testes irão permitir avaliar o protótipo ao nível da qualidade da recomendação prestada. Poder-se-á, assim, atingir o objetivo relativo à integração deste protótipo num sistema de recomendação de apoio ao turista utilizado pela Câmara Municipal do Porto.
Resumo:
Grande parte do tráfego online tem origem em páginas de resultados de motores de de pesquisa. Estes constituem hoje uma ferramenta fundamental de que os turistas se socorrem para pesquisar e filtrar a informação necessária ao planeamento das suas viagens, sendo, por isso, bastante tidos em conta pelas entidades ligadas ao turismo no momento da definição das suas estratégias de marketing. No presente documento é descrita a investigação feita em torno do modo de funcionamento do motor de pesquisa Google e das métricas que utiliza para avaliação de websites e páginas web. Desta investigação resultou a implementação de um website de conteúdos afetos ao mercado de turismo e viagens em Portugal, focado no mercado do turismo externo – All About Portugal. A implementação do website pretende provar, sustentando-se em orientações da área do SEO, que a propagação de conteúdos baseada unicamente nos motores de pesquisa é viável, confirmando, deste modo, a sua importância. Os dados de utilização desse mesmo website introduzem novos elementos que poderão servir de base a novos estudos.
Resumo:
Relatório EPE - Relatório de estágio em Educação Pré-Escolar: O presente relatório de estágio foi elaborado no âmbito da unidade curricular de Prática Pedagógica Supervisionada, integrada no Mestrado em Educação Pré – Escolar e Ensino do 1º Ciclo do Ensino Básico da Escola Superior de Educação do Instituto Politécnico do Porto. O estágio realizou-se no Jardim de Infância Gaia 13 que abarca crianças desde os 3 aos 6 anos de idade. A interação com a instituição e com o grupo de crianças e equipa educativa foi feita de modo progressivo, de modo a que as atividades planificadas e o projeto curricular de grupo construído, fossem ao encontro das características do contexto e do grupo de crianças. Desde o início da prática pedagógica que se construíram planificações semanais, que tinham como pressuposto a identificação das necessidades de desenvolvimento das crianças, bem como os seus interesses, os objetivos, os resultados de aprendizagem e os recursos pedagógicos, integrados no plano de ação. O trabalho desenvolvido teve por base a metodologia de investigação–ação, através de uma articulação entre a teoria e a prática, com a intenção de proporcionar competências profissionais na mestranda tais como: ser capaz de mobilizar vários saberes científicos e pedagógicos correspondentes à educação pré – escolar; ser capaz de desenvolver estratégias pedagógicas diferenciadas; construir uma atitude reflexiva de caráter indagador. Todo este processo contribuiu para a idealização de uma identidade profissional, em construção permanente, numa expectativa de aprendizagem ao longo da vida.
Resumo:
The change of paradigm imposed by the Bologna process, in which the student will be responsible for their own learning, and the presence of a new generation of students with higher technological skills, represent a huge challenge for higher education institutions. The use of new Web Social concepts in teaching process, supported by applications commonly called Web 2.0, with which these new students feel at ease, can bring benefits in terms of motivation and the frequency and quality of students' involvement in academic activities. An e-learning platform with web-based applications as a complement can significantly contribute to the development of different skills in higher education students, covering areas which are usually in deficit.
Resumo:
Astringency is an organoleptic property of beverages and food products resulting mainly from the interaction of salivary proteins with dietary polyphenols. It is of great importance to consumers, but the only effective way of measuring it involves trained sensorial panellists, providing subjective and expensive responses. Concurrent chemical evaluations try to screen food astringency, by means of polyphenol and protein precipitation procedures, but these are far from the real human astringency sensation where not all polyphenol–protein interactions lead to the occurrence of precipitate. Here, a novel chemical approach that tries to mimic protein–polyphenol interactions in the mouth is presented to evaluate astringency. A protein, acting as a salivary protein, is attached to a solid support to which the polyphenol binds (just as happens when drinking wine), with subsequent colour alteration that is fully independent from the occurrence of precipitate. Employing this simple concept, Bovine Serum Albumin (BSA) was selected as the model salivary protein and used to cover the surface of silica beads. Tannic Acid (TA), employed as the model polyphenol, was allowed to interact with the BSA on the silica support and its adsorption to the protein was detected by reaction with Fe(III) and subsequent colour development. Quantitative data of TA in the samples were extracted by colorimetric or reflectance studies over the solid materials. The analysis was done by taking a regular picture with a digital camera, opening the image file in common software and extracting the colour coordinates from HSL (Hue, Saturation, Lightness) and RGB (Red, Green, Blue) colour model systems; linear ranges were observed from 10.6 to 106.0 μmol L−1. The latter was based on the Kubelka–Munk response, showing a linear gain with concentrations from 0.3 to 10.5 μmol L−1. In either of these two approaches, semi-quantitative estimation of TA was enabled by direct eye comparison. The correlation between the levels of adsorbed TA and the astringency of beverages was tested by using the assay to check the astringency of wines and comparing these to the response of sensorial panellists. Results of the two methods correlated well. The proposed sensor has significant potential as a robust tool for the quantitative/semi-quantitative evaluation of astringency in wine.
Resumo:
This work aims to evaluate the feasibility of using image-based cytometry (IBC) in the analysis of algal cell quantification and viability, using Pseudokirchneriella subcapitata as a cell model. Cell concentration was determined by IBC to be in a linear range between 1 × 105 and 8 × 106 cells mL−1. Algal viability was defined on the basis that the intact membrane of viable cells excludes the SYTOX Green (SG) probe. The disruption of membrane integrity represents irreversible damage and consequently results in cell death. Using IBC, we were able to successfully discriminate between live (SG-negative cells) and dead algal cells (heat-treated at 65 °C for 60 min; SG-positive cells). The observed viability of algal populations containing different proportions of killed cells was well correlated (R 2 = 0.994) with the theoretical viability. The validation of the use of this technology was carried out by exposing algal cells of P. subcapitata to a copper stress test for 96 h. IBC allowed us to follow the evolution of cell concentration and the viability of copper-exposed algal populations. This technology overcomes several main drawbacks usually associated with microscopy counting, such as labour-intensive experiments, tedious work and lack of the representativeness of the cell counting. In conclusion, IBC allowed a fast and automated determination of the total number of algal cells and allowed us to analyse viability. This technology can provide a useful tool for a wide variety of fields that utilise microalgae, such as the aquatic toxicology and biotechnology fields.
Resumo:
Paper presented at the 8th European Conference on Knowledge Management, Barcelona, 6-7 Sep. 2008 URL: http://www.academic-conferences.org/eckm/eckm2007/eckm07-home.htm
Resumo:
We describe a novel approach to explore DNA nucleotide sequence data, aiming to produce high-level categorical and structural information about the underlying chromosomes, genomes and species. The article starts by analyzing chromosomal data through histograms using fixed length DNA sequences. After creating the DNA-related histograms, a correlation between pairs of histograms is computed, producing a global correlation matrix. These data are then used as input to several data processing methods for information extraction and tabular/graphical output generation. A set of 18 species is processed and the extensive results reveal that the proposed method is able to generate significant and diversified outputs, in good accordance with current scientific knowledge in domains such as genomics and phylogenetics.