14 resultados para Collaborative filtering
em Instituto Politécnico do Porto, Portugal
Resumo:
Nearest neighbour collaborative filtering (NNCF) algorithms are commonly used in multimedia recommender systems to suggest media items based on the ratings of users with similar preferences. However, the prediction accuracy of NNCF algorithms is affected by the reduced number of items – the subset of items co-rated by both users – typically used to determine the similarity between pairs of users. In this paper, we propose a different approach, which substantially enhances the accuracy of the neighbour selection process – a user-based CF (UbCF) with semantic neighbour discovery (SND). Our neighbour discovery methodology, which assesses pairs of users by taking into account all the items rated at least by one of the users instead of just the set of co-rated items, semantically enriches this enlarged set of items using linked data and, finally, applies the Collinearity and Proximity Similarity metric (CPS), which combines the cosine similarity with Chebyschev distance dissimilarity metric. We tested the proposed SND against the Pearson Correlation neighbour discovery algorithm off-line, using the HetRec data set, and the results show a clear improvement in terms of accuracy and execution time for the predicted recommendations.
Resumo:
Recommendation systems have been growing in number over the last fifteen years. To evolve and adapt to the demands of the actual society, many paradigms emerged giving birth to even more paradigms and hybrid approaches. These approaches contain strengths and weaknesses that need to be evaluated according to the knowledge area in which the system is going to be implemented. Mobile devices have also been under an incredible growth rate in every business area, and there are already lots of mobile based systems to assist tourists. This explosive growth gave birth to different mobile applications, each having their own advantages and disadvantages. Since recommendation and mobile systems might as well be integrated, this work intends to present the current state of the art in tourism mobile and recommendation systems, as well as to state their advantages and disadvantages.
Resumo:
Com a expansão da Televisão Digital e a convergência entre os meios de difusão convencionais e a televisão sobre IP, o número de canais disponíveis tem aumentado de forma gradual colocando o espectador numa situação de difícil escolha quanto ao programa a visionar. Sobrecarregados com uma grande quantidade de programas e informação associada, muitos espectadores desistem sistematicamente de ver um programa e tendem a efectuar zapping entre diversos canais ou a assistir sempre aos mesmos programas ou canais. Diante deste problema de sobrecarga de informação, os sistemas de recomendação apresentam-se como uma solução. Nesta tese pretende estudar-se algumas das soluções existentes dos sistemas de recomendação de televisão e desenvolver uma aplicação que permita a recomendação de um conjunto de programas que representem potencial interesse ao espectador. São abordados os principais conceitos da área dos algoritmos de recomendação e apresentados alguns dos sistemas de recomendação de programas de televisão desenvolvidos até à data. Para realizar as recomendações foram desenvolvidos dois algoritmos baseados respectivamente em técnicas de filtragem colaborativa e de filtragem de conteúdo. Estes algoritmos permitem através do cálculo da similaridade entre itens ou utilizadores realizar a predição da classificação que um utilizador atribuiria a um determinado item (programa de televisão, filme, etc.). Desta forma é possível avaliar o nível de potencial interesse que o utilizador terá em relação ao respectivo item. Os conjuntos de dados que descrevem as características dos programas (título, género, actores, etc.) são armazenados de acordo com a norma TV-Anytime. Esta norma de descrição de conteúdo multimédia apresenta a vantagem de ser especificamente vocacionada para conteúdo audiovisual e está disponível livremente. O conjunto de recomendações obtidas é apresentado ao utilizador através da interacção com uma aplicação Web que permite a integração de todos os componentes do sistema. Para validação do trabalho foi considerado um dataset de teste designado de htrec2011-movielens-2k e cujo conteúdo corresponde a um conjunto de filmes classificados por diversos utilizadores num ambiente real. Este conjunto de filmes possui, para além da classificações atribuídas pelos utilizadores, um conjunto de dados que descrevem o género, directores, realizadores e país de origem. Para validação final do trabalho foram realizados diversos testes dos quais o mais relevante correspondeu à avaliação da distância entre predições e valores reais e cujo objectivo é classificar a capacidade dos algoritmos desenvolvidos preverem com precisão as classificações que os utilizadores atribuiriam aos itens analisados.
Resumo:
he expansion of Digital Television and the convergence between conventional broadcasting and television over IP contributed to the gradual increase of the number of available channels and on demand video content. Moreover, the dissemination of the use of mobile devices like laptops, smartphones and tablets on everyday activities resulted in a shift of the traditional television viewing paradigm from the couch to everywhere, anytime from any device. Although this new scenario enables a great improvement in viewing experiences, it also brings new challenges given the overload of information that the viewer faces. Recommendation systems stand out as a possible solution to help a watcher on the selection of the content that best fits his/her preferences. This paper describes a web based system that helps the user navigating on broadcasted and online television content by implementing recommendations based on collaborative and content based filtering. The algorithms developed estimate the similarity between items and users and predict the rating that a user would assign to a particular item (television program, movie, etc.). To enable interoperability between different systems, programs characteristics (title, genre, actors, etc.) are stored according to the TV-Anytime standard. The set of recommendations produced are presented through a Web Application that allows the user to interact with the system based on the obtained recommendations.
Resumo:
The aim of this paper is to present an adaptation model for an Adaptive Educational Hypermedia System, PCMAT. The adaptation of the application is based on progressive self-assessment (exercises, tasks, and so on) and applies the constructivist learning theory and the learning styles theory. Our objective is the creation of a better, more adequate adaptation model that takes into account the complexities of different users.
Resumo:
Collaborative Work plays an important role in today’s organizations, especially in areas where decisions must be made. However, any decision that involves a collective or group of decision makers is, by itself complex, but is becoming recurrent in recent years. In this work we present the VirtualECare project, an intelligent multi-agent system able to monitor, interact and serve its customers, which are, normally, in need of care services. In last year’s there has been a substantially increase on the number of people needed of intensive care, especially among the elderly, a phenomenon that is related to population ageing. However, this is becoming not exclusive of the elderly, as diseases like obesity, diabetes and blood pressure have been increasing among young adults. This is a new reality that needs to be dealt by the health sector, particularly by the public one. Given this scenarios, the importance of finding new and cost effective ways for health care delivery are of particular importance, especially when we believe they should not to be removed from their natural “habitat”. Following this line of thinking, the VirtualECare project will be presented, like similar ones that preceded it. Recently we have also assisted to a growing interest in combining the advances in information society - computing, telecommunications and presentation – in order to create Group Decision Support Systems (GDSS). Indeed, the new economy, along with increased competition in today’s complex business environments, takes the companies to seek complementarities in order to increase competitiveness and reduce risks. Under these scenarios, planning takes a major role in a company life. However, effective planning depends on the generation and analysis of ideas (innovative or not) and, as a result, the idea generation and management processes are crucial. Our objective is to apply the above presented GDSS to a new area. We believe that the use of GDSS in the healthcare arena will allow professionals to achieve better results in the analysis of one’s Electronically Clinical Profile (ECP). This achievement is vital, regarding the explosion of knowledge and skills, together with the need to use limited resources and get better results.
Resumo:
No decorrer do projeto SELEAG foi desenvolvido um jogo de aventura gráfica educativo com o propósito de ensinar história, cultura e relações sociais aos alunos. Este jogo foi avaliado em contexto de sala de aula em diversos países, obtendo resultados positivos. No entanto, por motivos técnicos, alguns dos objetivos propostos pelo projeto não puderam ser devidamente explorados, como permitir que o jogo fosse extensível por outros educadores ou suportar a colaboração online entre os jogadores. Nomeadamente, as ferramentas utilizadas para desenvolver o jogo eram demasiado complicadas para serem utilizadas fora da equipa de desenvolvimento, o que limitou a extensibilidade do projeto, e tornou impossível que educadores sem conhecimentos de programação fossem também capazes de traduzir os seus conteúdos educativos para este formato. Além disso, apesar do jogo possuir algumas funcionalidades de colaboração online, toda a interação era efetuada externamente ao jogo, através de um fórum de mensagens, o que demonstrou ser pouco motivante para os jogadores, pois muitos deles nem se aperceberam que havia uma componente de colaboração no jogo. O objetivo desta tese incide sobre estes dois problemas, e consistiu em desenvolver um editor e motor de jogo com uma interface simples de utilizar, que não necessita de conhecimentos prévios de programação, e que permite criar jogos de aventura gráfica com uma componente de colaboração online verdadeiramente embebida na jogabilidade. A aplicação desenvolvida foi testada por um conjunto de utilizadores de diversas áreas, tendo-se obtido resultados que demonstram a acessibilidade e simplicidade da mesma, independentemente do nível de experiência prévio de programação do utilizador. A componente de colaboração online foi também muito bem recebida pelos utilizadores, os quais demonstraram bastante interesse em ver jogos de aventura gráfica com componente de colaboração online serem desenvolvidos no futuro.
Resumo:
The development of new products or processes involves the creation, re-creation and integration of conceptual models from the related scientific and technical domains. Particularly, in the context of collaborative networks of organisations (CNO) (e.g. a multi-partner, international project) such developments can be seriously hindered by conceptual misunderstandings and misalignments, resulting from participants with different backgrounds or organisational cultures, for example. The research described in this article addresses this problem by proposing a method and the tools to support the collaborative development of shared conceptualisations in the context of a collaborative network of organisations. The theoretical model is based on a socio-semantic perspective, while the method is inspired by the conceptual integration theory from the cognitive semantics field. The modelling environment is built upon a semantic wiki platform. The majority of the article is devoted to developing an informal ontology in the context of a European R&D project, studied using action research. The case study results validated the logical structure of the method and showed the utility of the method.
Resumo:
The behavior of robotic manipulators with backlash is analyzed. Based on the pseudo-phase plane two indices are proposed to evaluate the backlash effect upon the robotic system: the root mean square error and the fractal dimension. For the dynamical analysis the noisy signals captured from the system are filtered through wavelets. Several tests are developed that demonstrate the coherence of the results.
Resumo:
Web-based course management and delivery is regarded by many institutions as a key factor in an increasingly competitive education and training world, but the systems currently available are largely unsatisfactory in terms of supporting collaborative work and access to practical science facilities. These limitations are less important in areas where “pen-and-paper” courseware is the mainstream, but become unacceptably restrictive when student assignments require real-time teamwork and access to laboratory equipment. This paper presents a web-accessible workbench for electronics design and test, which was developed in the scope of an European IST project entitled PEARL, with the aim of supporting two main features: full web access and collaborative learning facilities.
Resumo:
This paper reports on the design and development of an Android-based context-aware system to support Erasmus students during their mobility in Porto. It enables: (i) guest users to create, rate and store personal points of interest (POI) in a private, local on board database; and (ii) authenticated users to upload and share POI as well as get and rate recommended POI from the shared central database. The system is a distributed client / server application. The server interacts with a central database that maintains the user profiles and the shared POI organized by category and rating. The Android GUI application works both as a standalone application and as a client module. In standalone mode, guest users have access to generic info, a map-based interface and a local database to store and retrieve personal POI. Upon successful authentication, users can, additionally, share POI as well as get and rate recommendations sorted by category, rating and distance-to-user.
Resumo:
19-22 June 2012 Madrid, Spain
Resumo:
In this work an adaptive filtering scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for Hidden Markov Model (HMM) based speech synthesis quality enhancement. The objective is to improve signal smoothness across HMMs and their related states and to reduce artifacts due to acoustic model's limitations. Both speech and artifacts are modelled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. Themodel parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The quality enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. The system's performance has been evaluated using mean opinion score tests and the proposed technique has led to improved results.
Resumo:
Context-aware recommendation of personalised tourism resources is possible because of personal mobile devices and powerful data filtering algorithms. The devices contribute with computing capabilities, on board sensors, ubiquitous Internet access and continuous user monitoring, whereas the filtering algorithms provide the ability to match the profile (interests and the context) of the tourist against a large knowledge bases of tourism resources. While, in terms of technology, personal mobile devices can gather user-related information, including the user context and access multiple data sources, the creation and maintenance of an updated knowledge base of tourism-related resources requires a collaborative approach due to the heterogeneity, volume and dynamic nature of the resources. The current PhD thesis aims to contribute to the solution of this problem by adopting a Crowdsourcing approach for the collaborative maintenance of the knowledge base of resources, Trust and Reputation for the validation of uploaded resources as well as publishers, Big Data for user profiling and context-aware filtering algorithms for the personalised recommendation of tourism resources.