13 resultados para Ciprofloxacin hydrochloride
em Instituto Politécnico do Porto, Portugal
Resumo:
A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0mVdecade−1 and 1.0×10−5 to 2.7×10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.
Resumo:
A 3D-mirror synthetic receptor for ciprofloxacin host–guest interactions and potentiometric transduction is presented. The host cavity was shaped on a polymeric surface assembled with methacrylic acid or 2-vinyl pyridine monomers by radical polymerization. Molecularly imprinted particles were dispersed in 2-nitrophenyl octyl ether and entrapped in a poly(vinyl chloride) matrix. The sensors exhibited a near-Nernstian response in steady state evaluations. Slopes and detection limits ranged from 26.8 to 50.0 mV decade−1 and 1.0 × 10−5 to 2.7 × 10−5 mol L−1, respectively. Good selectivity was observed for trimethoprim, enrofloxacin, tetracycline, cysteine, galactose, hydroxylamine, creatinine, ammonium chloride, sucrose, glucose, sulphamerazine and sulfadiazine. The sensors were successfully applied to the determination of ciprofloxacin concentrations in fish and in pharmaceuticals. The method presented offered the advantages of simplicity, accuracy, applicability to colored and turbid samples and automation feasibility, as well as confirming the use of molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction.
Resumo:
A square-wave voltammetric (SWV) method and a flow injection analysis system with amperometric detection were developed for the determination of tramadol hydrochloride. The SWV method enables the determination of tramadol over the concentration range of 15-75 µM with a detection limit of 2.2 µM. Tramadol could be determined in concentrations between 9 and 50 µM at a sampling rate of 90 h-1, with a detection limit of 1.7 µM using the flow injection system. The electrochemical methods developed were successfully applied to the determination of tramadol in pharmaceutical dosage forms, without any pre-treatment of the samples. Recovery trials were performed to assess the accuracy of the results; the values were between 97 and 102% for both methods.
Resumo:
The work presented describes the development and evaluation of two flow-injection analysis (FIA) systems for the automated determination of carbaryl in spiked natural waters and commercial formulations. Samples are injected directly into the system where they are subjected to alkaline hydrolysis thus forming 1-naphthol. This product is readily oxidised at a glassy carbon electrode. The electrochemical behaviour of 1-naphthol allows the development of an FIA system with an amperometric detector in which 1-naphthol determination, and thus measurement of carbaryl concentration, can be performed. Linear response over the range 1.0×10–7 to 1.0×10–5 mol L–1, with a sampling rate of 80 samples h–1, was recorded. The detection limit was 1.0×10–8 mol L–1. Another FIA manifold was constructed but this used a colorimetric detector. The methodology was based on the coupling of 1-naphthol with phenylhydrazine hydrochloride to produce a red complex which has maximum absorbance at 495 nm. The response was linear from 1.0×10–5 to 1.5×10–3 mol L–1 with a detection limit of 1.0×10–6 mol L–1. Sample-throughput was about 60 samples h–1. Validation of the results provided by the two FIA methodologies was performed by comparing them with results from a standard HPLC–UV technique. The relative deviation was <5%. Recovery trials were also carried out and the values obtained ranged from 97.0 to 102.0% for both methods. The repeatability (RSD, %) of 12 consecutive injections of one sample was 0.8% and 1.6% for the amperometric and colorimetric systems, respectively.
Resumo:
A new man-tailored biomimetic sensor for Chlorpromazine host-guest interactions and potentiometric transduction is presented. The artificial host was imprinted within methacrylic acid, 2-vinyl pyridine and 2-acrylamido-2-methyl-1-propanesulfonic acid based polymers. Molecularly imprinted particles were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. Slopes and detection limits ranged 51–67 mV/decade and 0.46–3.9 μg/mL, respectively, in steady state conditions. Sensors were independent fromthe pHof test solutionswithin 2.0–5.5.Good selectivitywas observed towards oxytetracycline, doxytetracycline, ciprofloxacin, enrofloxacin, nalidixic acid, sulfadiazine, trimethoprim, glycine, hydroxylamine, cysteine and creatinine. Analytical features in flowing media were evaluated on a double-channel manifold, with a carrier solution of 5.0×10−2 mol/L phosphate buffer. Near-Nernstian response was observed over the concentration range 1.0×10−4 to 1.0×10−2 mol/L. Average slopes were about 48 mV/decade. The sensors were successfully applied to field monitoring of CPZ in fish samples, offering the advantages of simplicity, accuracy, automation feasibility and applicability to complex samples.
Resumo:
The impact of effluent wastewaters from four different hospitals: a university (1456 beds), a general (350 beds), a pediatric (110 beds) and a maternity hospital (96 beds), which are conveyed to the same wastewater treatment plant (WWTP), was evaluated in the receiving urban wastewaters. The occurrence of 78 pharmaceuticals belonging to several therapeutic classes was assessed in hospital effluents and WWTP wastewaters (influent and effluent) as well as the contribution of each hospital in WWTP influent in terms of pharmaceutical load. Results indicate that pharmaceuticals are widespread pollutants in both hospital and urban wastewaters. The contribution of hospitals to the input of pharmaceuticals in urban wastewaters widely varies, according to their dimension. The estimated total mass loadings were 306 g d− 1 for the university hospital, 155 g d− 1 for the general one, 14 g d− 1 for the pediatric hospital and 1.5 g d− 1 for the maternity hospital, showing that the biggest hospitals have a greater contribution to the total mass load of pharmaceuticals. Furthermore, analysis of individual contributions of each therapeutic group showed that NSAIDs, analgesics and antibiotics are among the groups with the highest inputs. Removal efficiency can go from over 90% for pharmaceuticals like acetaminophen and ibuprofen to not removal for β-blockers and salbutamol. Total mass load of pharmaceuticals into receiving surface waters was estimated between 5 and 14 g/d/1000 inhabitants. Finally, the environmental risk posed by pharmaceuticals detected in hospital and WWTP effluents was assessed by means of hazard quotients toward different trophic levels (algae, daphnids and fish). Several pharmaceuticals present in the different matrices were identified as potentially hazardous to aquatic organisms, showing that especial attention should be paid to antibiotics such as ciprofloxacin, ofloxacin, sulfamethoxazole, azithromycin and clarithromycin, since their hazard quotients in WWTP effluent revealed that they could pose an ecotoxicological risk to algae.
Resumo:
A bi-enzymatic biosensor (LACC–TYR–AuNPs–CS/GPE) for carbamates was prepared in a single step by electrodeposition of a hybrid film onto a graphene doped carbon paste electrode (GPE). Graphene and the gold nanoparticles (AuNPs) were morphologically characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, dynamic light scattering and laser Doppler velocimetry. The electrodeposited hybrid film was composed of laccase (LACC), tyrosinase (TYR) and AuNPs entrapped in a chitosan (CS) polymeric matrix. Experimental parameters, namely graphene redox state, AuNPs:CS ratio, enzymes concentration, pH and inhibition time were evaluated. LACC–TYR–AuNPs–CS/GPE exhibited an improved Michaelis–Menten kinetic constant (26.9 ± 0.5 M) when compared with LACC–AuNPs–CS/GPE (37.8 ± 0.2 M) and TYR–AuNPs–CS/GPE (52.3 ± 0.4 M). Using 4-aminophenol as substrate at pH 5.5, the device presented wide linear ranges, low detection limits (1.68×10− 9 ± 1.18×10− 10 – 2.15×10− 7 ± 3.41×10− 9 M), high accuracy, sensitivity (1.13×106 ± 8.11×104 – 2.19×108 ± 2.51×107 %inhibition M− 1), repeatability (1.2–5.8% RSD), reproducibility (3.2–6.5% RSD) and stability (ca. twenty days) to determine carbaryl, formetanate hydrochloride, propoxur and ziram in citrus fruits based on their inhibitory capacity on the polyphenoloxidases activity. Recoveries at two fortified levels ranged from 93.8 ± 0.3% (lemon) to 97.8 ± 0.3% (orange). Glucose, citric acid and ascorbic acid do not interfere significantly in the electroanalysis. The proposed electroanalytical procedure can be a promising tool for food safety control.
Resumo:
Fluoxetine is a selective serotonin reuptake inhibitor (SSRI) widely used in the treatment of major depression. It has been detected in surface and wastewaters, being able to negatively affect aquatic organisms. Most of the ecotoxicity studies focused only in pharmaceuticals, though excipients can also pose a risk to non-target organisms. In this work the ecotoxicity of five medicines (three generic formulations and two brand labels) containing the same active substance (fluoxetine hydrochloride) was tested on the alga Chlorella vulgaris, in order to evaluate if excipients can influence their ecotoxicity. Effective concentrations that cause 50% of inhibition (EC50) ranging from 0.25 to 15 mg L−1 were obtained in the growth inhibition test performed for the different medicines. The corresponding values for fluoxetine concentration are 10 times lower. Higher EC50 values had been published for the same alga considering only the toxicity of fluoxetine. Therefore, this increase in toxicity may be attributed to the presence of excipients. Thus more studies on ecotoxicological effects of excipients are required in order to assess the environmental risk they may pose to aquatic organisms.
Resumo:
A low-cost disposable was developed for rapid detection of the protein biomarker myoglobin (Myo) as a model analyte. A screen printed electrode was modified with a molecularly imprinted material grafted on a graphite support and incorporated in a matrix composed of poly(vinyl chloride) and the plasticizer o-nitrophenyloctyl ether. The protein-imprinted material (PIM) was produced by growing a reticulated polymer around a protein template. This is followed by radical polymerization of 4-styrenesulfonic acid, 2-aminoethyl methacrylate hydrochloride, and ethylene glycol dimethacrylate. The polymeric layer was then covalently bound to the graphitic support, and Myo was added during the imprinting stage to act as a template. Non-imprinted control materials (CM) were also prepared by omitting the Myo template. Morphological and structural analysis of PIM and CM by FTIR, Raman, and SEM/EDC microscopies confirmed the modification of the graphite support. The analytical performance of the SPE was assessed by square wave voltammetry. The average limit of detection is 0.79 μg of Myo per mL, and the slope is −0.193 ± 0.006 μA per decade. The SPE-CM cannot detect such low levels of Myo but gives a linear response at above 7.2 μg · mL−1, with a slope of −0.719 ± 0.02 μA per decade. Interference studies with hemoglobin, bovine serum albumin, creatinine, and sodium chloride demonstrated good selectivity for Myo. The method was successfully applied to the determination of Myo urine and is conceived to be a promising tool for screening Myo in point-of-care patients with ischemia.
Resumo:
This work proposes different kind of solid-contact graphite-based electrodes for the selective determination of sulphonamides (SPHs) in pharmaceuticals, biological fluids and aquaculture waters. Sulfadiazine (SDZ) and sulfamethoxazole (SMX) were selected for this purpose for being the most representative compounds of this group. The template molecules were imprinted in sol–gel (ISG) and the resulting material was used as detecting element. This was made by employing it as either a sensing layer or an ionophore of PVC-based membranes and subsequent potentiometric transduction, a strategy never reported before. The corresponding non-imprinted sol–gel (NISG) membranes were used as blank. The effect of plasticizer and kind/charge of ionic lipophilic additive was also studied. The best performance in terms of slope, linearity ranges and signal reproducibility and repeatability was achieved by PVC membranes including a high dielectric constant plasticizer and 15 mg of ISG particles. The corresponding average slope was −51.4 and −52.4 mV/decade, linear responses were 9.0 × 10−6 and 1.7 × 10−5 M, and limits of detection were 0.74 and 1.3 μg/mL for SDZ and for SMX, respectively. Good selectivity with log Kpot < −0.3 was observed for carbonate, chloride, fluoride, hydrogenocarbonate, nitrate, nitrite, phosphate, cyanide, sulfate, borate, persulphate, citrate, tartrate, salicylate, tetracycline, ciprofloxacin, sulphamerazine, sulphatiazole, dopamine, glucose, galactose, cysteine and creatinine. The best sensors were successfully applied to the analysis of real samples with relative errors ranging from −6.8 to + 3.7%.
Resumo:
A new man-tailored biomimetic sensor for Chlorpromazine host-guest interactions and potentiometric transduction is presented. The artificial host was imprinted within methacrylic acid, 2-vinyl pyridine and 2-acrylamido-2-methyl-1-propanesulfonic acid based polymers. Molecularly imprinted particles were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. Slopes and detection limits ranged 51–67 mV/decade and 0.46–3.9 μg/mL, respectively, in steady state conditions. Sensors were independent from the pH of test solutions within 2.0–5.5. Good selectivity was observed towards oxytetracycline, doxytetracycline, ciprofloxacin, enrofloxacin, nalidixic acid, sulfadiazine, trimethoprim, glycine, hydroxylamine, cysteine and creatinine. Analytical features in flowing media were evaluated on a double-channel manifold, with a carrier solution of 5.0 × 10−2 mol/L phosphate buffer. Near-Nernstian response was observed over the concentration range 1.0 × 10−4 to 1.0 × 10−2 mol/L. Average slopes were about 48 mV/decade. The sensors were successfully applied to field monitoring of CPZ in fish samples, offering the advantages of simplicity, accuracy, automation feasibility and applicability to complex samples.
Resumo:
Enrofloxacin (ENR) is an antimicrobial used both in humans and in food producing species. Its control is required in farmed species and their surroundings in order to reduce the prevalence of antibiotic resistant bacteria. Thus, a new biomimetic sensor enrofloxacin is presented. An artificial host was imprinted in specific polymers. These were dispersed in 2-nitrophenyloctyl ether and entrapped in a poly(vinyl chloride) matrix. The potentiometric sensors exhibited a near-Nernstian response. Slopes expressing mV/Δlog([ENR]/M) varied within 48–63. The detection limits ranged from 0.28 to 1.01 µg mL−1. Sensors were independent from the pH of test solutions within 4–7. Good selectivity was observed toward potassium, calcium, barium, magnesium, glycine, ascorbic acid, creatinine, norfloxacin, ciprofloxacin, and tetracycline. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ± 0.7%), fast response, good sensitivity (47 mV/Δlog([ENR]/M), wide linear range (1.0 × 10−5–1.0 × 10−3 M), low detection limit (0.9 µg mL−1), and a stable baseline for a 5 × 10−2 M acetate buffer (pH 4.7) carrier. The sensors were used to analyze fish samples. The method offered the advantages of simplicity, accuracy, and automation feasibility. The sensing membrane may contribute to the development of small devices allowing in vivo measurements of enrofloxacin or parent-drugs.
Resumo:
Esta dissertação descreve o trabalho desenvolvido ao longo de um ano e um mês desde a pesquisa teórica até à prática experimental no âmbito da unidade curricular de Dissertação/estágio do Mestrado em Engenharia Química, no ramo Tecnologias em Proteção Ambiental. O tema desta dissertação consiste na avaliação do funcionamento de duas estações de tratamento de águas residuais (ETAR) do interior do município de Vila Nova de Gaia no que diz respeito ao possível aumento da resistência a antibióticos na ETAR de Febros e na ETAR de Lever. Os testes de sensibilidade a antibióticos (TSA) foram executados para ambas as ETAR, sendo as amostras de água recolhidas na entrada e na saída dos reatores biológicos (tratamento secundário). Além disso, foram realizados testes de avaliação da eficiência de desinfeção por radiação ultravioleta (UV) relativamente à Escherichia coli (E. coli) na ETAR de Lever. Os antibióticos selecionados para a realização deste trabalho foram a Eritromicina, a Azitromicina, a Claritromicina, a Ofloxacina, a Ciprofloxacina, o Sulfametoxazol, o Trimetoprim e o Metronidazol. Esta seleção baseou-se no facto de estes serem alguns dos antibióticos mais consumidos e mais persistentes no meio ambiente. A bactéria E. coli (isolada a partir de amostras das águas residuais estudadas) foi escolhida para a realização deste estudo uma vez que está sempre presente nas águas residuais domésticas e está associada a fenómenos de multirresistência a antibióticos. Os testes de TSA foram realizados seguindo a metodologia de difusão por discos. No período do estudo (Março a Junho de 2015) identificaram-se situações quer de aumento de resistência quer de aumento de sensibilidade aos antibióticos testados. As situações mais graves de aumento de resistência, a que corresponderam a halos nulos, verificaram-se para os antibióticos Claritromicina, Trimetoprim e Metronidazol, ocorrendo com maior frequência para os dois últimos, que aliás são fármacos que são administrados em simultâneo. Os períodos mais problemáticos em termos de aumento das resistências foram ligeiramente diferentes nas duas ETAR. No caso da ETAR de Febros correspondeu ao mês Abril e na ETAR de Lever ocorreu entre o final de Abril e o início de Maio. Considera-se que estes períodos poderão coincidir com um aumento do consumo destes fármacos devido à sua utilização no combate a infeções respiratórias muito comuns nesta altura do ano. Não se observou qualquer sensibilidade da E. coli para o Metronidazol porque é um antibiótico com indicação para algumas bactérias anaeróbias, fungos e giardia, e que à partida não tem capacidade para eliminar a E. coli. A eficiência da desinfeção na ETAR de Lever relativamente à remoção de E. coli foi satisfatória. Sendo de salientar a importância da manutenção, no que se refere à identificação de possíveis avarias nas lâmpadas e correspondente limpeza. Os resultados deste trabalho provam a existência de estirpes da bactéria E. coli resistentes a alguns dos antibióticos estudados, o que reforça a importância da desinfeção no tratamento de águas residuais domésticas.