20 resultados para Brassica vegetables
em Instituto Politécnico do Porto, Portugal
Resumo:
An analytical multiresidue method for the simultaneous determination of seven pesticides in fresh vegetable samples, namely, courgette (Cucurbita pepo), cucumber (Cucumis sativus), lettuce (Lactuca sativa, Romaine and Iceberg varieties) and peppers (Capsicum sp.) is described. The procedure, based on microwave-assisted extraction (MAE) and analysis by liquid chromatography– photodiode array (LC–PDA) detection was applied to four carbamates (carbofuran, carbaryl, chlorpropham and EPTC) and three urea pesticides (monolinuron, metobromuron and linuron). Extraction solvent and the addition of anhydrous sodium sulphate to fresh vegetable homogenate before MAE were the parameters optimised for each commodity. Recovery studies were performed using spiked samples in the range 250–403 µgkg- 1 in each pesticide. The pesticide residues were extracted using 20mL acetonitrile at 60 ºC, for 10 min. Acceptable recoveries and RSDs were attained (overall average recovery of 77.2% and RSDs are lower than 11%). Detection limits ranged between 5.8 µgkg- 1 for carbaryl to 12.3 µgkg- 1 for carbofuran. The analytical protocol was applied for quality control of 41 fresh vegetable samples bought in Oporto Metropolitan Area (North Portugal). None of the samples contained any detectable amounts of the studied compounds.
Resumo:
Spent coffee grounds (SCG) are usually disposed as common garbage, without specific reuse strategies implemented so far. Due to its recognised richness in bioactive compounds, the effect of SCG on lettuce’s macro- and micro-elements was assessed to define its effectiveness for agro industrial reuse. A greenhouse pot experiment was conducted with different amounts of fresh and composted spent coffee, and potassium, magnesium, phosphorous, calcium, sodium, iron, manganese, zinc and copper were analysed. A progressive decrease on all lettuce mineral elements was verified with the increase of fresh spent coffee, except for potassium. In opposition, an increment of lettuce’s essential macro-elements was verified when low amounts of composted spent coffee were applied (5%, v/v), increasing potassium content by 40%, manganese by 30%, magnesium by 20%, and sodium by 10%, of nutritional relevance This practical approach offers an alternative reuse for this by-product, extendable to other crops, providing value-added vegetable products.
Resumo:
The mineral content (phosphorous (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu)) of eight ready-to-eat baby leaf vegetables was determined. The samples were subjected to microwave-assisted digestion and the minerals were quantified by High-Resolution Continuum Source Atomic Absorption Spectrometry (HR-CS-AAS) with flame and electrothermal atomisation. The methods were optimised and validated producing low LOQs, good repeatability and linearity, and recoveries, ranging from 91% to 110% for the minerals analysed. Phosphorous was determined by a standard colorimetric method. The accuracy of the method was checked by analysing a certified reference material; results were in agreement with the quantified value. The samples had a high content of potassium and calcium, but the principal mineral was iron. The mineral content was stable during storage and baby leaf vegetables could represent a good source of minerals in a balanced diet. A linear discriminant analysis was performed to compare the mineral profile obtained and showed, as expected, that the mineral content was similar between samples from the same family. The Linear Discriminant Analysis was able to discriminate different samples based on their mineral profile.
Resumo:
This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.
Resumo:
The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria–plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils.
Resumo:
The effect of boiling (10 minutes) on eleven green vegetables frequently consumed in the Mediterranean diet was evaluated. For that, some physicochemical parameters and the contents of vitamin C, phenolics and carotenoids, as well as the antioxidant activity, were determined in raw and boiled samples. The raw vegetables analysed in this study were good sources of vitamin C, carotenoids and phenolic compounds, with contents ranging from 10.6 to 255.1 mg/100 g, 0.03 to 3.29 mg/100 g and 202.9 to 1010.7 mg/100 g, respectively. Boiling promoted losses in different extensions considering both the different bioactive compounds and the distinct vegetables analysed. Contrary to phenolics (more resistant), vitamin C was the most affected compound. Boiling also originated significant losses in the antioxidant activity of the vegetables. Considering all the parameters analysed, the vegetables most affected by boiling were broccoli and lettuce. The least affected ones were collard and tronchuda cabbage.
Resumo:
A Diabetes Mellitus (DM) é uma doença crónica que apresenta como principais factores de risco: obesidade, gordura abdominal e história familiar. Para avaliar o risco de desenvolver DM tipo 2 dentro de 10 anos aplicou-se uma ficha de avaliação onde se verificou que 12,5% apresentam risco sensivelmente elevado e 3,6% risco moderado. No entanto esta população já apresenta alguns factores de risco tais como IMC elevado, perímetro abdominal aumentado ou muito aumentado, baixa actividade física, alimentação deficiente em vegetais e frutas e antecedentes familiares com DM.
Resumo:
This study reports the levels of nitrate and nitrite of 34 vegetable samples, including different varieties of cabbage, lettuce, spinaches, parsley and turnips, collected in several locations of an intensive agricultural area (Modivas, Vila do Conde, northern Portugal). Nitrate levels ranged between 54 and 2440 mg NO-3 kg-1, while nitrite levels ranged between 1.1 and 57 mg NO-2 kg-1. The maximum residue levels established for nitrate in spinach and lettuce samples were not exceeded. Nitrate and nitrite levels reported in the literature for the same type of samples are reviewed, as well as the contribution of vegetables to nitrate and nitrite dietary exposure of populations.
Resumo:
Objective: To examine the association between obesity and food group intakes, physical activity and socio-economic status in adolescents. Design: A cross-sectional study was carried out in 2008. Cole’s cut-off points were used to categorize BMI. Abdominal obesity was defined by a waist circumference at or above the 90th percentile, as well as a waist-to-height ratio at or above 0?500. Diet was evaluated using an FFQ, and the food group consumption was categorized using sex-specific tertiles of each food group amount. Physical activity was assessed via a self-report questionnaire. Socio-economic status was assessed referring to parental education and employment status. Data were analysed separately for girls and boys and the associations among food consumption, physical activity, socio-economic status and BMI, waist circumference and waist-to-height ratio were evaluated using logistic regression analysis, adjusting the results for potential confounders. Setting: Public schools in the Azorean Archipelago, Portugal. Subjects: Adolescents (n 1209) aged 15–18 years. Results: After adjustment, in boys, higher intake of ready-to-eat cereals was a negative predictor while vegetables were a positive predictor of overweight/ obesity and abdominal obesity. Active boys had lower odds of abdominal obesity compared with inactive boys. Boys whose mother showed a low education level had higher odds of abdominal obesity compared with boys whose mother presented a high education level. Concerning girls, higher intake of sweets and pastries was a negative predictor of overweight/obesity and abdominal obesity. Girls in tertile 2 of milk intake had lower odds of abdominal obesity than those in tertile 1. Girls whose father had no relationship with employment displayed higher odds of abdominal obesity compared with girls whose father had high employment status. Conclusions: We have found that different measures of obesity have distinct associations with food group intakes, physical activity and socio-economic status.
Resumo:
A novel enzymatic biosensor for carbamate pesticides detection was developed through the direct immobilization of Trametes versicolor laccase on graphene doped carbon paste electrode functionalized with Prussianblue films (LACC/PB/GPE). Graphene was prepared by graphite sonication-assisted exfoliation and characterized by transmission electron microscopy and X-ray photoelectron spectro- scopy. The Prussian blue film electrodeposited onto graphene doped carbon paste electrode allowed considerable reduction of the charge transfer resistance and of the capacitance of the device.The combined effects of pH, enzyme concentration and incubation time on biosensor response were optimized using a 23 full-factorial statistical design and response surface methodology. Based on the inhibition of laccase activity and using 4-aminophenol as redox mediator at pH 5.0,LACC/PB/GPE exhibited suitable characteristics in terms of sensitivity, intra-and inter-day repeatability (1.8–3.8% RSD), reproducibility (4.1 and 6.3%RSD),selectivity(13.2% bias at the higher interference: substrate ratios tested),accuracy and stability(ca. twenty days)for quantification of five carbamates widely applied on tomato and potato crops.The attained detection limits ranged between 5.2×10−9 mol L−1(0.002 mg kg−1 w/w for ziram)and 1.0×10−7 mol L−1 (0.022 mg kg−1 w/w for carbofuran).Recovery values for the two tested spiking levels ranged from 90.2±0.1%(carbofuran)to 101.1±0.3% (ziram) for tomato and from 91.0±0.1%(formetanate)to 100.8±0.1%(ziram)for potato samples.The proposed methodology is appropriate to enable testing pesticide levels in food samples to fit with regulations and food inspections.
Resumo:
Trabalho de projeto apresentado ao Instituto Politécnico do Porto para obtenção do Grau de Mestre em Gestão das Organizações, Ramo de Gestão de Empresas Orientador: Professor Doutor Orlando Manuel Martins Marques de Lima Rua
Resumo:
Fractional calculus (FC) is no longer considered solely from a mathematical viewpoint, and is now applied in many emerging scientific areas, such as electricity, magnetism, mechanics, fluid dynamics, and medicine. In the field of dynamical systems, significant work has been carried out proving the importance of fractional order mathematical models. This article studies the electrical impedance of vegetables and fruits from a FC perspective. From this line of thought, several experiments are developed for measuring the impedance of botanical elements. The results are analyzed using Bode and polar diagrams, which lead to electrical circuit models revealing fractional-order behaviour.
Resumo:
This work describes the development of an electrochemical enzymatic biosensor for quantification of the pesticide formetanate hydrochloride (FMT). It is based on a gold electrode modified with electrodeposited gold nanoparticles and laccase. The principle behind its development relies on FMT's capacity to inhibit the laccase catalytic reaction that occurs in the presence of phenolic substrates. The optimum values for the relevant experimental variables such as gold nanoparticles electrochemical deposition (at − 0.2 V for 100 s), laccase immobilization (via glutaraldehyde cross-linking), laccase concentration (12.4 mg/mL), substrate selection and concentration (5.83×10−5 M of aminophenol), pH (5.0), buffer (Britton–Robinson), and square-wave voltammetric parameters were determined. The developed biosensor was successfully applied to FMT determination in mango and grapes. The attained limit of detection was 9.5×10−8 ± 9.5×10−10 M (0.02 ± 2.6×10−4 mg/kg on a fresh fruit weight basis). Recoveries for the five tested spiking levels ranged from 95.5 ± 2.9 (grapes) to 108.6 ± 2.5% (mango). The results indicated that the proposed device presents suitable characteristics in terms of sensitivity (20.58 ± 0.49 A/μM), linearity (9.43×10−7 to 1.13×10−5 M), accuracy, repeatability (RSD of 1.4%), reproducibility (RSD of 1.8%) and stability (19 days) for testing of compliance with established maximum residue limits of FMT in fruits and vegetables.
Resumo:
Pea-shoots are a new option as ready-to-eat baby-leaf vegetable. However, data about the nutritional composition and the shelf-life stability of these leaves, especially their phytonutrient composition is scarce. In this work, the macronutrient, micronutrient and phytonutrients profile of minimally processed pea shoots were evaluated at the beginning and at the end of a 10-day storage period. Several physicochemical characteristics (color, pH, total soluble solids, and total titratable acidity) were also monitored. Standard AOAC methods were applied in the nutritional value evaluation, while chromatographic methods with UV–vis and mass detection were used to analyze free forms of vitamins (HPLC-DAD-ESI-MS/MS), carotenoids (HPLC-DAD-APCI-MSn) and flavonoid compounds (HPLC-DAD-ESI-MSn). Atomic absorption spectrometry (HR-CS-AAS) was employed to characterize the mineral content of the leaves. As expected, pea leaves had a high water (91.5%) and low fat (0.3%) and carbohydrate (1.9%) contents, being a good source of dietary fiber (2.1%). Pea shoots showed a high content of vitamins C, E and A, potassium and phosphorous compared to other ready-to-eat green leafy vegetables. The carotenoid profile revealed a high content of β-carotene and lutein, typical from green leafy vegetables. The leaves had a mean flavonoid content of 329 mg/100 g of fresh product, mainly composed by glycosylated quercetin and kaempferol derivatives. Pea shoots kept their fresh appearance during the storage being color maintained throughout the shelf-life. The nutritional composition was in general stable during storage, showing some significant (p < 0.05) variation in certain water-soluble vitamins.
Resumo:
Nutritional management is essential for Phenylketonuria (PKU) treatment, consisting in a semi-synthetic and low phenylalanine (Phe) diet, which includes strictly controlled amounts of low protein natural foods (essentially fruits and vegetables) supplemented with Phe-free protein substitutes and dietetic low-protein products. PKU diet has to be carefully planned, providing the best ingredient combinations, so that patients can achieve good metabolic control and an adequate nutritional status. Hereupon, it is mandatory to know the detailed composition of natural and/or cooked foodstuffs prepared specifically for these patients. We intended to evaluate sixteen dishes specifically prepared for PKU patients, regarding the nutritional composition, Phe and tyrosine (Tyr) contents, fatty acids profile, and vitamins E and B12 amounts. The nutritional composition of the cooked samples was 15.5–92.0 g/100 g, for moisture; 0.7–3.2 g/100 g, for protein; 0.1–25.0 g/100 g, for total fat; and 5.0–62.0 g/100 g, for total carbohydrates. Fatty acids profile and vitamin E amount reflected the type of fat used. All samples were poor in vitamin B12 (0.3–0.8 μg/100 g). Boiled rice presented the highest Phe content: 50.3 mg/g of protein. These data allow a more accurate calculation of the diet portions to be ingested by the patients according to their individual tolerance.