17 resultados para Bayesian probability
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi-agent system that has the purpose of providing decision support to electricity market negotiating players. ALBidS uses a set of different strategies for providing decision support to market players. These strategies are used accordingly to their probability of success for each different context. The approach proposed in this paper uses a Bayesian network for deciding the most probably successful action at each time, depending on past events. The performance of the proposed methodology is tested using electricity market simulations in MASCEM (Multi-Agent Simulator of Competitive Electricity Markets). MASCEM provides the means for simulating a real electricity market environment, based on real data from real electricity market operators.
Resumo:
One of the main arguments in favour of the adoption and convergence with the international accounting standards published by the IASB (i.e. IAS/IFRS) is that these will allow comparability of financial reporting across countries. However, because these standards use verbal probability expressions (v.g. “probable”) when establishing the recognition and disclosure criteria for accounting elements, they require professional accountants to interpret and classify the probability of an outcome or event taking into account those terms and expressions and to best decide in terms of financial reporting. This paper reports part of a research we carried out on the interpretation of “in context” verbal probability expressions used in the IAS/IFRS by the auditors registered with the Portuguese Securities Market Commission, the Comissão do Mercado de Valores Mobiliários (CMVM). Our results provide support for the hypothesis that culture affects the CMVM registered auditors’ interpretation of verbal probability expressions through its influence on the accounting value (or attitude) of conservatism. Our results also suggest that there are significant differences in their interpretation of the term “probable”, which is consistent with literature in general. Since “probable” is the most frequent verbal probability expression used in the IAS/IFRS, this may have a negative impact on financial statements comparability.
Resumo:
The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
We study the effects of product differentiation in a Stackelberg model with demand uncertainty for the first mover. We do an ex-ante and ex-post analysis of the profits of the leader and of the follower firms in terms of product differentiation and of the demand uncertainty. We show that even with small uncertainty about the demand, the follower firm can achieve greater profits than the leader, if their products are sufficiently differentiated. We also compute the probability of the second firm having higher profit than the leading firm, subsequently showing the advantages and disadvantages of being either the leader or the follower firm.
Resumo:
This technical report describes the PDFs which have been implemented to model the behaviours of certain parameters of the Repeater-Based Hybrid Wired/Wireless PROFIBUS Network Simulator (RHW2PNetSim) and Bridge-Based Hybrid Wired/Wireless PROFIBUS Network Simulator (BHW2PNetSim).
Fractional derivatives: probability interpretation and frequency response of rational approximations
Resumo:
The theory of fractional calculus (FC) is a useful mathematical tool in many applied sciences. Nevertheless, only in the last decades researchers were motivated for the adoption of the FC concepts. There are several reasons for this state of affairs, namely the co-existence of different definitions and interpretations, and the necessity of approximation methods for the real time calculation of fractional derivatives (FDs). In a first part, this paper introduces a probabilistic interpretation of the fractional derivative based on the Grünwald-Letnikov definition. In a second part, the calculation of fractional derivatives through Padé fraction approximations is analyzed. It is observed that the probabilistic interpretation and the frequency response of fraction approximations of FDs reveal a clear correlation between both concepts.
Resumo:
We consider a Bertrand duopoly model with unknown costs. The firms' aim is to choose the price of its product according to the well-known concept of Bayesian Nash equilibrium. The chooses are made simultaneously by both firms. In this paper, we suppose that each firm has two different technologies, and uses one of them according to a certain probability distribution. The use of either one or the other technology affects the unitary production cost. We show that this game has exactly one Bayesian Nash equilibrium. We analyse the advantages, for firms and for consumers, of using the technology with highest production cost versus the one with cheapest production cost. We prove that the expected profit of each firm increases with the variance of its production costs. We also show that the expected price of each good increases with both expected production costs, being the effect of the expected production costs of the rival dominated by the effect of the own expected production costs.
Resumo:
Probability and Statistics—Selected Problems is a unique book for senior undergraduate and graduate students to fast review basic materials in Probability and Statistics. Descriptive statistics are presented first, and probability is reviewed secondly. Discrete and continuous distributions are presented. Sample and estimation with hypothesis testing are presented in the last two chapters. The solutions for proposed excises are listed for readers to references.
Resumo:
A new method, based on linear correlation and phase diagrams was successfully developed for processes like the sedimentary process, where the deposition phase can have different time duration - represented by repeated values in a series - and where the erosion can play an important rule deleting values of a series. The sampling process itself can be the cause of repeated values - large strata twice sampled - or deleted values: tiny strata fitted between two consecutive samples. What we developed was a mathematical procedure which, based upon the depth chemical composition evolution, allows the establishment of frontiers as well as the periodicity of different sedimentary environments. The basic tool isn't more than a linear correlation analysis which allow us to detect the existence of eventual evolution rules, connected with cyclical phenomena within time series (considering the space assimilated to time), with the final objective of prevision. A very interesting discovery was the phenomenon of repeated sliding windows that represent quasi-cycles of a series of quasi-periods. An accurate forecast can be obtained if we are inside a quasi-cycle (it is possible to predict the other elements of the cycle with the probability related with the number of repeated and deleted points). We deal with an innovator methodology, reason why it's efficiency is being tested in some case studies, with remarkable results that shows it's efficacy. Keywords: sedimentary environments, sequence stratigraphy, data analysis, time-series, conditional probability.
Resumo:
This paper proposes a PSO based approach to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The statistical failure and repair data of distribution components is the main basis of the proposed methodology that uses a fuzzyprobabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A Modified Discrete PSO optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
This paper proposes a methodology to increase the probability of delivering power to any load point through the identification of new investments. The methodology uses a fuzzy set approach to model the uncertainty of outage parameters, load and generation. A DC fuzzy multicriteria optimization model considering the Pareto front and based on mixed integer non-linear optimization programming is developed in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power to all customers in the distribution network at the minimum possible cost for the system operator, while minimizing the non supplied energy cost. To illustrate the application of the proposed methodology, the paper includes a case study which considers an 33 bus distribution network.
Resumo:
A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network
Resumo:
In this paper, we consider a Stackelberg duopoly competition with differentiated goods and with unknown costs. The firms' aim is to choose the output levels of their products according to the well-known concept of perfect Bayesian equilibrium. There is a firm ( F1 ) that chooses first the quantity 1 q of its good; the other firm ( F2 ) observes 1 q and then chooses the quantity 2 q of its good. We suppose that each firm has two different technologies, and uses one of them following a probability distribution. The use of either one or the other technology affects the unitary production cost. We show that there is exactly one perfect Bayesian equilibrium for this game. We analyse the advantages, for firms and for consumers, of using the technology with the highest production cost versus the one with the cheapest cost.
Resumo:
We consider two Cournot firms, one located in the home country and the other in the foreign country, producing substitute goods for consumption in a third country. We suppose that neither the home government nor the foreign firm know the costs of the home firm, while the foreign firm cost is common knowledge. We determine the separating sequential equilibrium outputs.