4 resultados para Aversive memory. Learning. Anxiolytic. Antidepressant. Acute restraint stress. Mice

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Era Tecnológica em que nos vemos inseridos, cujos avanços acontecem a uma velocidade vertiginosa exige, por parte das Instituições de Ensino Superior (IES) uma atitude proactiva no sentido de utilização dos muitos recursos disponíveis. Por outro lado, os elementos próprios da sociedade da informação – flexibilidade, formação ao longo da vida, acessibilidade à informação, mobilidade, entre muito outros – atuam como fortes impulsionadores externos para que as IES procurem e analisem novas modalidades formativas. Perante a mobilidade crescente, que se tem revelado massiva, a aprendizagem tende a ser cada vez mais individualizada, visual e prática. A conjugação de várias formas/tipologias de transmissão de conhecimento, de métodos didáticos e mesmo de ambientes e situações de aprendizagem induzem uma melhor adaptação do estudante, que poderá procurar aqueles que melhor vão ao encontro das suas expetativas, isto é, favorecem um processo de ensino-aprendizagem eficiente na perspetiva da forma de aprender de cada um. A definição de políticas estratégicas relacionadas com novas modalidades de ensino/formação tem sido uma preocupação constante na nossa instituição, nomeadamente no domínio do ensino à distância, seja ele e-Learning, b-Learning ou, mais recentemente, “open-Learning, onde se inserem os MOOC – Massive Open Online Courses (não esquecendo a vertente m-Learning), de acordo com as várias tendências europeias (OECD, 2007) (Comissão Europeia, 2014) e com os objetivos da “Europa 2020”. Neste sentido surge o Projeto Matemática 100 STRESS, integrado no projeto e-IPP | Unidade de e-Learning do Politécnico do Porto que criou a sua plataforma MOOC, abrindo em junho de 2014 o seu primeiro curso – Probabilidades e Combinatória. Pretendemos dar a conhecer este Projeto, e em particular este curso, que envolveu vários docentes de diferentes unidades orgânicas do IPP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MOOC (as an acronym for Massive Open Online Courses) are a quite new model for the delivery of online learning to students. As “Massive” and “Online”, these courses are proposed to be accessible to many more learners than would be possible through conventional teaching. As “Open” they are (frequently) free of charge and participation is not limited by the geographical situation of the learners, creating new learning opportunities in Higher Education Institutions (HEI). In this paper we describe a recently started project “Matemática 100 STRESS (Math Without STRESS) integrated in the e-IPP project | e-Learning Unit of Porto’s Polytechnic Institute (IPP) which has created its own MOOC platform and launched its first course – Probabilities and Combinatorics – in early June/2014. In this MOOC development were involved several lecturers from four of the seven IPP schools.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

MOOC (as an acronym for Massive Open Online Courses) are a quite new model for the delivery of online learning to students. As “Massive” and “Online”, these courses are proposed to be accessible to many more learners than would be possible through conventional teaching. As “Open” they are (frequently) free of charge and participation is not limited by the geographical situation of the learners, creating new learning opportunities in Higher Education Institutions (HEI). In this paper we describe a recently started project “Matemática 100 STRESS (Math Without STRESS) integrated in the e-IPP project | e-Learning Unit of Porto’s Polytechnic Institute (IPP) which has created its own MOOC platform and launched its first course – Probabilities and Combinatorics – in early June/2014. In this MOOC development were involved several lecturers from four of the seven IPP schools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.