64 resultados para 3D feature extraction

em Instituto Politécnico do Porto, Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

XXXIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2015). 15 to 19, May, 2015, III Workshop de Comunicação em Sistemas Embarcados Críticos. Vitória, Brasil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

XXXIII Simpósio Brasileiro de Redes de Computadores e Sistemas Distribuídos (SBRC 2015), III Workshop de Comunicação em Sistemas Embarcados Críticos. Vitória, Brasil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The vision of the Internet of Things (IoT) includes large and dense deployment of interconnected smart sensing and monitoring devices. This vast deployment necessitates collection and processing of large volume of measurement data. However, collecting all the measured data from individual devices on such a scale may be impractical and time consuming. Moreover, processing these measurements requires complex algorithms to extract useful information. Thus, it becomes imperative to devise distributed information processing mechanisms that identify application-specific features in a timely manner and with a low overhead. In this article, we present a feature extraction mechanism for dense networks that takes advantage of dominance-based medium access control (MAC) protocols to (i) efficiently obtain global extrema of the sensed quantities, (ii) extract local extrema, and (iii) detect the boundaries of events, by using simple transforms that nodes employ on their local data. We extend our results for a large dense network with multiple broadcast domains (MBD). We discuss and compare two approaches for addressing the challenges with MBD and we show through extensive evaluations that our proposed distributed MBD approach is fast and efficient at retrieving the most valuable measurements, independent of the number sensor nodes in the network.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

More than ever, there is an increase of the number of decision support methods and computer aided diagnostic systems applied to various areas of medicine. In breast cancer research, many works have been done in order to reduce false-positives when used as a double reading method. In this study, we aimed to present a set of data mining techniques that were applied to approach a decision support system in the area of breast cancer diagnosis. This method is geared to assist clinical practice in identifying mammographic findings such as microcalcifications, masses and even normal tissues, in order to avoid misdiagnosis. In this work a reliable database was used, with 410 images from about 115 patients, containing previous reviews performed by radiologists as microcalcifications, masses and also normal tissue findings. Throughout this work, two feature extraction techniques were used: the gray level co-occurrence matrix and the gray level run length matrix. For classification purposes, we considered various scenarios according to different distinct patterns of injuries and several classifiers in order to distinguish the best performance in each case described. The many classifiers used were Naïve Bayes, Support Vector Machines, k-nearest Neighbors and Decision Trees (J48 and Random Forests). The results in distinguishing mammographic findings revealed great percentages of PPV and very good accuracy values. Furthermore, it also presented other related results of classification of breast density and BI-RADS® scale. The best predictive method found for all tested groups was the Random Forest classifier, and the best performance has been achieved through the distinction of microcalcifications. The conclusions based on the several tested scenarios represent a new perspective in breast cancer diagnosis using data mining techniques.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A análise forense de documentos é uma das áreas das Ciências Forenses, responsável pela verificação da autenticidade dos documentos. Os documentos podem ser de diferentes tipos, sendo a moeda ou escrita manual as evidências forenses que mais frequentemente motivam a análise. A associação de novas tecnologias a este processo de análise permite uma melhor avaliação dessas evidências, tornando o processo mais célere. Esta tese baseia-se na análise forense de dois tipos de documentos - notas de euro e formulários preenchidos por escrita manual. Neste trabalho pretendeu-se desenvolver técnicas de processamento e análise de imagens de evidências dos tipos referidos com vista a extração de medidas que permitam aferir da autenticidade dos mesmos. A aquisição das imagens das notas foi realizada por imagiologia espetral, tendo-se definidas quatro modalidades de aquisição: luz visível transmitida, luz visível refletida, ultravioleta A e ultravioleta C. Para cada uma destas modalidades de aquisição, foram também definidos 2 protocolos: frente e verso. A aquisição das imagens dos documentos escritos manualmente efetuou-se através da digitalização dos mesmos com recurso a um digitalizador automático de um aparelho multifunções. Para as imagens das notas desenvolveram-se vários algoritmos de processamento e análise de imagem, específicos para este tipo de evidências. Esses algoritmos permitem a segmentação da região de interesse da imagem, a segmentação das sub-regiões que contém as marcas de segurança a avaliar bem como da extração de algumas características. Relativamente as imagens dos documentos escritos manualmente, foram também desenvolvidos algoritmos de segmentação que permitem obter todas as sub-regiões de interesse dos formulários, de forma a serem analisados os vários elementos. Neste tipo de evidências, desenvolveu-se ainda um algoritmo de análise para os elementos correspondentes à escrita de uma sequência numérica o qual permite a obtenção das imagens correspondentes aos caracteres individuais. O trabalho desenvolvido e os resultados obtidos permitiram a definição de protocolos de aquisição de imagens destes tipos de evidências. Os algoritmos automáticos de segmentação e análise desenvolvidos ao longo deste trabalho podem ser auxiliares preciosos no processo de análise da autenticidade dos documentos, o qual, ate então, é feito manualmente. Apresentam-se ainda os resultados dos estudos feitos às diversas evidências, nomeadamente as performances dos diversos algoritmos analisados, bem como algumas das adversidades encontradas durante o processo. Apresenta-se também uma discussão da metodologia adotada e dos resultados, bem como de propostas de continuação deste trabalho, nomeadamente, a extração de características e a implementação de classificadores capazes aferir da autenticidade dos documentos.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

IEEE International Conference on Cyber Physical Systems, Networks and Applications (CPSNA'15), Hong Kong, China.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Demo in Workshop on ns-3 (WNS3 2015). 13 to 14, May, 2015. Castelldefels, Spain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As novas tecnologias aplicadas ao processamento de imagem e reconhecimento de padrões têm sido alvo de um grande progresso nas últimas décadas. A sua aplicação é transversal a diversas áreas da ciência, nomeadamente a área da balística forense. O estudo de evidências (invólucros e projeteis) encontradas numa cena de crime, recorrendo a técnicas de processamento e análise de imagem, é pertinente pelo facto de, aquando do disparo, as armas de fogo imprimirem marcas únicas nos invólucros e projéteis deflagrados, permitindo relacionar evidências deflagradas pela mesma arma. A comparação manual de evidências encontradas numa cena de crime com evidências presentes numa base de dados, em termos de parâmetros visuais, constitui uma abordagem demorada. No âmbito deste trabalho pretendeu-se desenvolver técnicas automáticas de processamento e análise de imagens de evidências, obtidas através do microscópio ótico de comparação, tendo por base algoritmos computacionais. Estes foram desenvolvidos com recurso a pacotes de bibliotecas e a ferramentas open-source. Para a aquisição das imagens de evidências balísticas foram definidas quatro modalidades de aquisição: modalidade Planar, Multifocus, Microscan e Multiscan. As imagens obtidas foram aplicados algoritmos de processamento especialmente desenvolvidos para o efeito. A aplicação dos algoritmos de processamento permite a segmentação de imagem, a extração de características e o alinhamento de imagem. Este último tem como finalidade correlacionar as evidências e obter um valor quantitativo (métrica), indicando o quão similar essas evidências são. Com base no trabalho desenvolvido e nos resultados obtidos, foram definidos protocolos de aquisição de imagens de microscopia, que possibilitam a aquisição de imagens das regiões passiveis de serem estudadas, assim como algoritmos que permitem automatizar o posterior processo de alinhamento de imagens de evidências, constituindo uma vantagem em relação ao processo de comparação manual.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nesta dissertação é apresentado um estudo dos sistemas de processamento automático de imagem em contexto de um problema relacionado com a individualização de neurónios em imagens da nematoda C. elegans durante estudos relacionados com a doença de Parkinson. Apresenta-se uma breve introdução à anatomia do verme, uma introdução à doença de Parkinson e uso do C. elegans em estudos relacionados e também é feita a análise de artigos em contexto de processamento de imagem para contextualizar a situação atual de soluções para o problema de extração de características e regiões específicas. Neste projeto é desenvolvida uma pipeline com o auxilio do software CellProfiler para procurar uma resposta para o problema em questão.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática. Sistemas Gráficos e Multimédia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the electricity market liberalization, distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity customers. In this environment all consumers are free to choose their electricity supplier. A fair insight on the customer´s behaviour will permit the definition of specific contract aspects based on the different consumption patterns. In this paper Data Mining (DM) techniques are applied to electricity consumption data from a utility client’s database. To form the different customer´s classes, and find a set of representative consumption patterns, we have used the Two-Step algorithm which is a hierarchical clustering algorithm. Each consumer class will be represented by its load profile resulting from the clustering operation. Next, to characterize each consumer class a classification model will be constructed with the C5.0 classification algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins are biochemical entities consisting of one or more blocks typically folded in a 3D pattern. Each block (a polypeptide) is a single linear sequence of amino acids that are biochemically bonded together. The amino acid sequence in a protein is defined by the sequence of a gene or several genes encoded in the DNA-based genetic code. This genetic code typically uses twenty amino acids, but in certain organisms the genetic code can also include two other amino acids. After linking the amino acids during protein synthesis, each amino acid becomes a residue in a protein, which is then chemically modified, ultimately changing and defining the protein function. In this study, the authors analyze the amino acid sequence using alignment-free methods, aiming to identify structural patterns in sets of proteins and in the proteome, without any other previous assumptions. The paper starts by analyzing amino acid sequence data by means of histograms using fixed length amino acid words (tuples). After creating the initial relative frequency histograms, they are transformed and processed in order to generate quantitative results for information extraction and graphical visualization. Selected samples from two reference datasets are used, and results reveal that the proposed method is able to generate relevant outputs in accordance with current scientific knowledge in domains like protein sequence/proteome analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a microwave-assisted extraction (MAE) methodology was compared with several conventional extraction methods (Soxhlet, Bligh & Dyer, modified Bligh & Dyer, Folch, modified Folch, Hara & Radin, Roese-Gottlieb) for quantification of total lipid content of three fish species: horse mackerel (Trachurus trachurus), chub mackerel (Scomber japonicus), and sardine (Sardina pilchardus). The influence of species, extraction method and frozen storage time (varying from fresh to 9 months of freezing) on total lipid content was analysed in detail. The efficiencies of methods MAE, Bligh & Dyer, Folch, modified Folch and Hara & Radin were the highest and although they were not statistically different, differences existed in terms of variability, with MAE showing the highest repeatability (CV = 0.034). Roese-Gottlieb, Soxhlet, and modified Bligh & Dyer methods were very poor in terms of efficiency as well as repeatability (CV between 0.13 and 0.18).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a novel application of microwave-assisted extraction (MAE) of polyphenols from brewer’s spent grains (BSG). A 24 orthogonal composite design was used to obtain the optimal conditions of MAE. The influence of the MAE operational parameters (extraction time, temperature, solvent volume and stirring speed) on the extraction yield of ferulic acid was investigated through response surface methodology. The results showed that the optimal conditions were 15 min extraction time, 100 °C extraction temperature, 20 mL of solvent, and maximum stirring speed. Under these conditions, the yield of ferulic acid was 1.31±0.04% (w/w), which was fivefold higher than that obtained with conventional solid–liquid extraction techniques. The developed new extraction method considerably reduces extraction time, energy and solvent consumption, while generating fewer wastes. HPLC-DADMS analysis indicated that other hydroxycinnamic acids and several ferulic acid dehydrodimers, as well as one dehydrotrimer were also present, confirming that BSG is a valuable source of antioxidant compounds.