6 resultados para 1142
em Instituto Politécnico do Porto, Portugal
Resumo:
This paper studies the DNA code of eleven mammals from the perspective of fractional dynamics. The application of Fourier transform and power law trendlines leads to a categorical representation of species and chromosomes. The DNA information reveals long range memory characteristics.
Resumo:
Animal locomotion is a complex process, involving the central pattern generators (neural networks, located in the spinal cord, that produce rhythmic patterns), the brainstem command systems, the steering and posture control systems and the top layer structures that decide which motor primitive is activated at a given time. Pinto and Golubitsky studied an integer CPG model for legs rhythms in bipeds. It is a four-coupled identical oscillators' network with dihedral symmetry. This paper considers a new complex order central pattern generator (CPG) model for locomotion in bipeds. A complex derivative Dα±jβ, with α, β ∈ ℜ+, j = √-1, is a generalization of the concept of an integer derivative, where α = 1, β = 0. Parameter regions where periodic solutions, identified with legs' rhythms in bipeds, occur, are analyzed. Also observed is the variation of the amplitude and period of periodic solutions with the complex order derivative.
Resumo:
Dissertação de Mestrado em Solicitadoria
Resumo:
Advances in technology have produced more and more intricate industrial systems, such as nuclear power plants, chemical centers and petroleum platforms. Such complex plants exhibit multiple interactions among smaller units and human operators, rising potentially disastrous failure, which can propagate across subsystem boundaries. This paper analyzes industrial accident data-series in the perspective of statistical physics and dynamical systems. Global data is collected from the Emergency Events Database (EM-DAT) during the time period from year 1903 up to 2012. The statistical distributions of the number of fatalities caused by industrial accidents reveal Power Law (PL) behavior. We analyze the evolution of the PL parameters over time and observe a remarkable increment in the PL exponent during the last years. PL behavior allows prediction by extrapolation over a wide range of scales. In a complementary line of thought, we compare the data using appropriate indices and use different visualization techniques to correlate and to extract relationships among industrial accident events. This study contributes to better understand the complexity of modern industrial accidents and their ruling principles.
Resumo:
We develop a new a coinfection model for hepatitis C virus (HCV) and the human immunodeficiency virus (HIV). We consider treatment for both diseases, screening, unawareness and awareness of HIV infection, and the use of condoms. We study the local stability of the disease-free equilibria for the full model and for the two submodels (HCV only and HIV only submodels). We sketch bifurcation diagrams for different parameters, such as the probabilities that a contact will result in a HIV or an HCV infection. We present numerical simulations of the full model where the HIV, HCV and double endemic equilibria can be observed. We also show numerically the qualitative changes of the dynamical behavior of the full model for variation of relevant parameters. We extrapolate the results from the model for actual measures that could be implemented in order to reduce the number of infected individuals.
Resumo:
We study the peculiar dynamical features of a fractional derivative of complex-order network. The network is composed of two unidirectional rings of cells, coupled through a "buffer" cell. The network has a Z3 × Z5 cyclic symmetry group. The complex derivative Dα±jβ, with α, β ∈ R+ is a generalization of the concept of integer order derivative, where α = 1, β = 0. Each cell is modeled by the Chen oscillator. Numerical simulations of the coupled cell system associated with the network expose patterns such as equilibria, periodic orbits, relaxation oscillations, quasiperiodic motion, and chaos, in one or in two rings of cells. In addition, fixing β = 0.8, we perceive differences in the qualitative behavior of the system, as the parameter c ∈ [13, 24] of the Chen oscillator and/or the real part of the fractional derivative, α ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, are varied. Some patterns produced by the coupled system are constrained by the network architecture, but other features are only understood in the light of the internal dynamics of each cell, in this case, the Chen oscillator. What is more important, architecture and/or internal dynamics?