156 resultados para communication network
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks including sensor networks. It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When enabling its beacon mode, the protocol makes possible real-time guarantees by using its Guaranteed Time Slot (GTS) mechanism. This paper analyzes the performance of the GTS allocation mechanism in IEEE 802.15.4. The analysis gives a full understanding of the behavior of the GTS mechanism with regards to delay and throughput metrics. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters. We then evaluate the delay bounds guaranteed by an allocation of a GTS using Network Calculus formalism. Finally, based on the analytic results, we analyze the impact of the IEEE 802.15.4 parameters on the throughput and delay bound guaranteed by a GTS allocation. The results of this work pave the way for an efficient dimensioning of an IEEE 802.15.4 cluster.
Resumo:
In this paper, we analyze the performance limits of the slotted CSMA/CA mechanism of IEEE 802.15.4 in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent) on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).
Resumo:
The IEEE 802.15.4 protocol proposes a flexible communication solution for Low-Rate Wireless Personal Area Networks (LR-WPAN) including wireless sensor networks (WSNs). It presents the advantage to fit different requirements of potential applications by adequately setting its parameters. When in beaconenabled mode, the protocol can provide timeliness guarantees by using its Guaranteed Time Slot (GTS) mechanism. However, power-efficiency and timeliness guarantees are often two antagonistic requirements in wireless sensor networks. The purpose of this paper is to analyze and propose a methodology for setting the relevant parameters of IEEE 802.15.4-compliant WSNs that takes into account a proper trade-off between power-efficiency and delay bound guarantees. First, we propose two accurate models of service curves for a GTS allocation as a function of the IEEE 802.15.4 parameters, using Network Calculus formalism. We then evaluate the delay bound guaranteed by a GTS allocation and express it as a function of the duty cycle. Based on the relation between the delay requirement and the duty cycle, we propose a power-efficient superframe selection method that simultaneously reduces power consumption and enables meeting the delay requirements of real-time flows allocating GTSs. The results of this work may pave the way for a powerefficient management of the GTS mechanism in an IEEE 802.15.4 cluster.
Resumo:
The IEEE 802.15.4 has been adopted as a communication protocol standard for Low-Rate Wireless Private Area Networks (LRWPANs). While it appears as a promising candidate solution for Wireless Sensor Networks (WSNs), its adequacy must be carefully evaluated. In this paper, we analyze the performance limits of the slotted CSMA/CA medium access control (MAC) mechanism in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility and potential for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent), the number of nodes and the data frame size on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We also analytically evaluate the impact of the slotted CSMA/CA overheads on the saturation throughput. We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).
Resumo:
This project was developed within the ART-WiSe framework of the IPP-HURRAY group (http://www.hurray.isep.ipp.pt), at the Polytechnic Institute of Porto (http://www.ipp.pt). The ART-WiSe – Architecture for Real-Time communications in Wireless Sensor networks – framework (http://www.hurray.isep.ipp.pt/art-wise) aims at providing new communication architectures and mechanisms to improve the timing performance of Wireless Sensor Networks (WSNs). The architecture is based on a two-tiered protocol structure, relying on existing standard communication protocols, namely IEEE 802.15.4 (Physical and Data Link Layers) and ZigBee (Network and Application Layers) for Tier 1 and IEEE 802.11 for Tier 2, which serves as a high-speed backbone for Tier 1 without energy consumption restrictions. Within this trend, an application test-bed is being developed with the objectives of implementing, assessing and validating the ART-WiSe architecture. Particularly for the ZigBee protocol case; even though there is a strong commercial lobby from the ZigBee Alliance (http://www.zigbee.org), there is neither an open source available to the community for this moment nor publications on its adequateness for larger-scale WSN applications. This project aims at fulfilling these gaps by providing: a deep analysis of the ZigBee Specification, mainly addressing the Network Layer and particularly its routing mechanisms; an identification of the ambiguities and open issues existent in the ZigBee protocol standard; the proposal of solutions to the previously referred problems; an implementation of a subset of the ZigBee Network Layer, namely the association procedure and the tree routing on our technological platform (MICAz motes, TinyOS operating system and nesC programming language) and an experimental evaluation of that routing mechanism for WSNs.
Resumo:
This report describes the development of a Test-bed Application for the ART-WiSe Framework with the aim of providing a means of access, validate and demonstrate that architecture. The chosen application is a kind of pursuit-evasion game where a remote controlled robot, navigating through an area covered by wireless sensor network (WSN), is detected and continuously tracked by the WSN. Then a centralized control station takes the appropriate actions for a pursuit robot to chase and “capture” the intruder one. This kind of application imposes stringent timing requirements to the underlying communication infrastructure. It also involves interesting research problems in WSNs like tracking, localization, cooperation between nodes, energy concerns and mobility. Additionally, it can be easily ported into a real-world application. Surveillance or search and rescue operations are two examples where this kind of functionality can be applied. This is still a first approach on the test-bed application and this development effort will be continuously pushed forward until all the envisaged objectives for the Art-WiSe architecture become accomplished.
Resumo:
The self similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. The fractal geometry is typically characterized by a recurrent structure. This study investigates the identification of a model for the respiratory tree by means of its electrical equivalent based on intrinsic morphology. Measurements were obtained from seven volunteers, in terms of their respiratory impedance by means of its complex representation for frequencies below 5 Hz. A parametric modeling is then applied to the complex valued data points. Since at low-frequency range the inertance is negligible, each airway branch is modeled by using gamma cell resistance and capacitance, the latter having a fractional-order constant phase element (CPE), which is identified from measurements. In addition, the complex impedance is also approximated by means of a model consisting of a lumped series resistance and a lumped fractional-order capacitance. The results reveal that both models characterize the data well, whereas the averaged CPE values are supraunitary and subunitary for the ladder network and the lumped model, respectively.
Resumo:
In practice the robotic manipulators present some degree of unwanted vibrations. The advent of lightweight arm manipulators, mainly in the aerospace industry, where weight is an important issue, leads to the problem of intense vibrations. On the other hand, robots interacting with the environment often generate impacts that propagate through the mechanical structure and produce also vibrations. In order to analyze these phenomena a robot signal acquisition system was developed. The manipulator motion produces vibrations, either from the structural modes or from endeffector impacts. The instrumentation system acquires signals from several sensors that capture the joint positions, mass accelerations, forces and moments, and electrical currents in the motors. Afterwards, an analysis package, running off-line, reads the data recorded by the acquisition system and extracts the signal characteristics. Due to the multiplicity of sensors, the data obtained can be redundant because the same type of information may be seen by two or more sensors. Because of the price of the sensors, this aspect can be considered in order to reduce the cost of the system. On the other hand, the placement of the sensors is an important issue in order to obtain the suitable signals of the vibration phenomenon. Moreover, the study of these issues can help in the design optimization of the acquisition system. In this line of thought a sensor classification scheme is presented. Several authors have addressed the subject of the sensor classification scheme. White (White, 1987) presents a flexible and comprehensive categorizing scheme that is useful for describing and comparing sensors. The author organizes the sensors according to several aspects: measurands, technological aspects, detection means, conversion phenomena, sensor materials and fields of application. Michahelles and Schiele (Michahelles & Schiele, 2003) systematize the use of sensor technology. They identified several dimensions of sensing that represent the sensing goals for physical interaction. A conceptual framework is introduced that allows categorizing existing sensors and evaluates their utility in various applications. This framework not only guides application designers for choosing meaningful sensor subsets, but also can inspire new systems and leads to the evaluation of existing applications. Today’s technology offers a wide variety of sensors. In order to use all the data from the diversity of sensors a framework of integration is needed. Sensor fusion, fuzzy logic, and neural networks are often mentioned when dealing with problem of combing information from several sensors to get a more general picture of a given situation. The study of data fusion has been receiving considerable attention (Esteban et al., 2005; Luo & Kay, 1990). A survey of the state of the art in sensor fusion for robotics can be found in (Hackett & Shah, 1990). Henderson and Shilcrat (Henderson & Shilcrat, 1984) introduced the concept of logic sensor that defines an abstract specification of the sensors to integrate in a multisensor system. The recent developments of micro electro mechanical sensors (MEMS) with unwired communication capabilities allow a sensor network with interesting capacity. This technology was applied in several applications (Arampatzis & Manesis, 2005), including robotics. Cheekiralla and Engels (Cheekiralla & Engels, 2005) propose a classification of the unwired sensor networks according to its functionalities and properties. This paper presents a development of a sensor classification scheme based on the frequency spectrum of the signals and on a statistical metrics. Bearing these ideas in mind, this paper is organized as follows. Section 2 describes briefly the robotic system enhanced with the instrumentation setup. Section 3 presents the experimental results. Finally, section 4 draws the main conclusions and points out future work.
Resumo:
The goal of this paper is to discuss the benefits and challenges of yielding an inter-continental network of remote laboratories supported and used by both European and Latin American Institutions of Higher Education. Since remote experimentation, understood as the ability to carry out real-world experiments through a simple Web browser, is already a proven solution for the educational community as a supplement to on-site practical lab work (and in some cases, namely for distance learning courses, a replacement to that work), the purpose is not to discuss its technical, pedagogical, or economical strengths, but rather to raise and try to answer some questions about the underlying benefits and challenges of establishing a peer-to-peer network of remote labs. Ultimately, we regard such a network as a constructive mechanism to help students gain the working and social skills often valued by multinational/global companies, while also providing awareness of local cultural aspects.
Resumo:
O presente projeto enquadra-se na área das redes de sensores sem fios, onde o seu crescente desenvolvimento permite aplicar esta tecnologia em diversas áreas, como por exemplo, na monitorização ambiental, utilização militar, domótica, saúde, entre outras. Uma rede de sensores sem fios consiste em diversos nós dispersos num campo de aplicação onde procedem à recolha de dados do ambiente em que estão inseridos, como o valor de uma temperatura, humidade ou outra grandeza física, e os transmitem para uma estação base onde podem ser monitorizados. Tendo a área da saúde uma importância significativa, este projeto focalizou-se na mesma. O projeto apresentado nesta dissertação teve como principal objetivo o desenvolvimento de uma rede de sensores sem fios, em que dois nós procedam à aquisição da temperatura corporal de uma pessoa em dois locais distintos, para posterior envio da mesma para os restantes nós da rede, onde será apresentada em estações de monitorização. Este projeto foi desenvolvido baseado num recente protocolo de redes sem fios, nomeadamente o protocolo ANTTM. Assim sendo, em primeiro lugar, serão abordados neste relatório os objetivos e a contextualização deste projeto. Em seguida, será apresentada uma comparação sobre alguns aspetos de algumas tecnologias de comunicações sem fios, nomeadamente o ZigBee, Bluetooth e ANT. Devido ao fato da tecnologia ANT ser a escolhida para o desenvolvimento deste projeto, será também apresentado um estudo mais detalhado sobre o mesmo. Depois, será apresentado o desenvolvimento e implementações efetuadas, e por último serão apresentadas as conclusões técnicas e pessoais que este projeto permitiu obter.
Resumo:
Learning management systems are routinely used for presenting, solving and grading exercises with large classes. However, teachers are constrained to use questions with pre-defined answers, such as multiple-choice, to automatically correct the exercises of their students. Complex exercises cannot be evaluated automatically by the LMS and require the coordination of a set of heterogeneous systems. For instance, programming exercises require a specialized exercise resolution environment and automatic evaluation features, each provided by a different type of system. In this paper, the authors discuss an approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach is based on a pivot component embedded in the LMS and has two main roles: 1) provide an exercise resolution environment, and 2) coordinate communication between the LMS and other systems, exposing their functions as web services. The integration of the pivot component in the LMS relies on Learning Tools Interoperability (LTI). This paper presents an architecture to coordinate a network of eLearning systems and validate the proposed approach by creating such a network integrated with LMS from two different vendors.
Resumo:
A Satisfação no trabalho, definida como reações individuais, cognitivas, afetivas e avaliativas perante o trabalho (Locke, 1983), tem sido amplamente estudada no âmbito das organizações. A sua medição na área da saúde contribui para incrementar um bom ambiente na prática e bem-estar dos profissionais e para aumentar a qualidade dos cuidados. Em 2006 surge um novo contexto de trabalho através da criação da RNCCI, que pretende fazer face ao crescente aumento de população em situação de dependência ou incapacidade, mas também aliviar a sobrecarga e custos associados aos cuidados hospitalares. A reorganização do trabalho nas unidades de cuidados continuados acenta nos princípios da interdisciplinariedade e cooperação entre a equipa, requerendo mudança e adaptação à prática. Sendo os enfermeiros a classe profissional com maior tempo de contacto nos cuidados, importa verificar se estão satisfeitos com a mudança induzida. Assim, este estudo de natureza quantitativa pretende medir e analisar a satisfação profissional ddos enfermeiros que trabalham no serviço de longa duração e manutenção nas unidades de cuidados continuados do distrito de Braga, e verificar se esta variável é influenciada por fatores sociodemográficos e laborais. Para a recolha de dados utiliza-se a Escala de Avaliação da Satisfação no Trabalho para Enfermeiros - EASPE© (α=0,814) e um questionário sociodemográfico e profissional. A análise dos dados é efetuada com recurso à estatística descritiva e inferencial com utilização dos testes de Mann-Whitney e de Kruskal-Wallis. Os resultados obtidos evidenciam que os enfermeiros apresentam um nível de satisfação global no trabalho positivo, mas negativo nas dimensões satisfação com benefícios e recompensas e satisfação com promoção. Conclui-se, ainda, que a satisfação com promoção é influenciada pelas habilitações literárias, que a satisfação com a comunicação é influenciada pela remuneração, que a satisfação com benefícios e recompensas é influenciada pelo horário semanal e que a unidade de cuidados é determinante na satisfação global no trabalho.
Resumo:
São vários os factores sociais e económicos que valorizam a aplicação de tecnologias de domótica em edifícios. No caso particular dos edifícios residenciais, a tendência dos seus utilizadores é a instalação de sistemas de controlo da segurança, do ambiente, de mecanismos de rega e de alarmes. Assim, seguindo a premissa do marketing, que identifica como uma boa prática a projecção de produtos / serviços que satisfaçam as necessidades inventariadas pelos seus utilizadores, este trabalho assenta na criação de um sistema domótico, controlado remotamente através de uma aplicação Android, que pretende, numa primeira instância, o controlo das lâmpadas de uma habitação. Neste trabalho é utilizado o protocolo KNX.TP para a comunicação dos dispositivos de domótica existentes no ISEP, que constituem o ambiente domótico deste trabalho. De forma a implementar o controlo remoto destes dispositivos via internet, este trabalho foca-se no desenvolvimento de uma interface IP-KNX, usando como hardware de controlo, um Arduino Mega 2560, uma placa de interface Ethernet para Arduino, a placa de integração KNX, e um servidor web com a linguagem PHP instalada. Para efeitos de demonstração, foi criada uma aplicação para o SO Android que controla as lâmpadas da rede KNX. Neste trabalho foram utilizadas várias linguagens de programação: C++ no firmware do Arduino, PHP no servidor web e JAVA + XML na aplicação Android.
Resumo:
The LMS plays an indisputable role in the majority of the eLearning environments. This eLearning system type is often used for presenting, solving and grading simple exercises. However, exercises from complex domains, such as computer programming, require heterogeneous systems such as evaluation engines, learning objects repositories and exercise resolution environments. The coordination of networks of such disparate systems is rather complex. This work presents a standard approach for the coordination of a network of eLearning systems supporting the resolution of exercises. The proposed approach use a pivot component embedded in the LMS with two roles: provide an exercise resolution environment and coordinate the communication between the LMS and other systems exposing their functions as web services. The integration of the pivot component with the LMS relies on the Learning Tools Interoperability. The validation of this approach is made through the integration of the component with LMSs from two vendors.
Resumo:
In recent years emerged several initiatives promoted by educational organizations to adapt Service Oriented Architectures (SOA) to e-learning. These initiatives commonly named eLearning Frameworks share a common goal: to create flexible learning environments by integrating heterogeneous systems already available in many educational institutions. However, these frameworks were designed for integration of systems participating in business like processes rather than on complex pedagogical processes as those related to automatic evaluation. Consequently, their knowledge bases lack some fundamental components that are needed to model pedagogical processes. The objective of the research described in this paper is to study the applicability of eLearning frameworks for modelling a network of heterogeneous eLearning systems, using the automatic evaluation of programming exercises as a case study. The paper surveys the existing eLearning frameworks to justify the selection of the e-Framework. This framework is described in detail and identified the necessary components missing from its knowledge base, more precisely, a service genre, expression and usage model for an evaluation service. The extensibility of the framework is tested with the definition of this service. A concrete model for evaluation of programming exercises is presented as a validation of the proposed approach.