128 resultados para multi-channel processing
Resumo:
Multi-agent architectures are well suited for complex inherently distributed problem solving domains. From the many challenging aspects that arise within this framework, a crucial one emerges: how to incorporate dynamic and conflicting agent beliefs? While the belief revision activity in a single agent scenario is concentrated on incorporating new information while preserving consistency, in a multi-agent system it also has to deal with possible conflicts between the agents perspectives. To provide an adequate framework, each agent, built as a combination of an assumption based belief revision system and a cooperation layer, was enriched with additional features: a distributed search control mechanism allowing dynamic context management, and a set of different distributed consistency methodologies. As a result, a Distributed Belief Revision Testbed (DiBeRT) was developed. This paper is a preliminary report presenting some of DiBeRT contributions: a concise representation of external beliefs; a simple and innovative methodology to achieve distributed context management; and a reduced inter-agent data exchange format.
Resumo:
Environmental management is a complex task. The amount and heterogeneity of the data needed for an environmental decision making tool is overwhelming without adequate database systems and innovative methodologies. As far as data management, data interaction and data processing is concerned we here propose the use of a Geographical Information System (GIS) whilst for the decision making we suggest a Multi-Agent System (MAS) architecture. With the adoption of a GIS we hope to provide a complementary coexistence between heterogeneous data sets, a correct data structure, a good storage capacity and a friendly user’s interface. By choosing a distributed architecture such as a Multi-Agent System, where each agent is a semi-autonomous Expert System with the necessary skills to cooperate with the others in order to solve a given task, we hope to ensure a dynamic problem decomposition and to achieve a better performance compared with standard monolithical architectures. Finally, and in view of the partial, imprecise, and ever changing character of information available for decision making, Belief Revision capabilities are added to the system. Our aim is to present and discuss an intelligent environmental management system capable of suggesting the more appropriate land-use actions based on the existing spatial and non-spatial constraints.
Resumo:
In a real world multiagent system, where the agents are faced with partial, incomplete and intrinsically dynamic knowledge, conflicts are inevitable. Frequently, different agents have goals or beliefs that cannot hold simultaneously. Conflict resolution methodologies have to be adopted to overcome such undesirable occurrences. In this paper we investigate the application of distributed belief revision techniques as the support for conflict resolution in the analysis of the validity of the candidate beams to be produced in the CERN particle accelerators. This CERN multiagent system contains a higher hierarchy agent, the Specialist agent, which makes use of meta-knowledge (on how the con- flicting beliefs have been produced by the other agents) in order to detect which beliefs should be abandoned. Upon solving a conflict, the Specialist instructs the involved agents to revise their beliefs accordingly. Conflicts in the problem domain are mapped into conflicting beliefs of the distributed belief revision system, where they can be handled by proven formal methods. This technique builds on well established concepts and combines them in a new way to solve important problems. We find this approach generally applicable in several domains.
Resumo:
Computerized scheduling methods and computerized scheduling systems according to exemplary embodiments. A computerized scheduling method may be stored in a memory and executed on one or more processors. The method may include defining a main multi-machine scheduling problem as a plurality of single machine scheduling problems; independently solving the plurality of single machine scheduling problems thereby calculating a plurality of near optimal single machine scheduling problem solutions; integrating the plurality of near optimal single machine scheduling problem solutions into a main multi-machine scheduling problem solution; and outputting the main multi-machine scheduling problem solution.
Resumo:
The mineral content (phosphorous (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu)) of eight ready-to-eat baby leaf vegetables was determined. The samples were subjected to microwave-assisted digestion and the minerals were quantified by High-Resolution Continuum Source Atomic Absorption Spectrometry (HR-CS-AAS) with flame and electrothermal atomisation. The methods were optimised and validated producing low LOQs, good repeatability and linearity, and recoveries, ranging from 91% to 110% for the minerals analysed. Phosphorous was determined by a standard colorimetric method. The accuracy of the method was checked by analysing a certified reference material; results were in agreement with the quantified value. The samples had a high content of potassium and calcium, but the principal mineral was iron. The mineral content was stable during storage and baby leaf vegetables could represent a good source of minerals in a balanced diet. A linear discriminant analysis was performed to compare the mineral profile obtained and showed, as expected, that the mineral content was similar between samples from the same family. The Linear Discriminant Analysis was able to discriminate different samples based on their mineral profile.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Sistemas Autónomos
Resumo:
Mestrado em Engenharia Informática, Área de Especialização em Tecnologias do Conhecimento e da Decisão
Resumo:
Os osciloscópios digitais são utilizados em diversas áreas do conhecimento, assumindo-se no âmbito da engenharia electrónica, como instrumentos indispensáveis. Graças ao advento das Field Programmable Gate Arrays (FPGAs), os instrumentos de medição reconfiguráveis, dadas as suas vantagens, i.e., altos desempenhos, baixos custos e elevada flexibilidade, são cada vez mais uma alternativa aos instrumentos tradicionalmente usados nos laboratórios. Tendo como objectivo a normalização no acesso e no controlo deste tipo de instrumentos, esta tese descreve o projecto e implementação de um osciloscópio digital reconfigurável baseado na norma IEEE 1451.0. Definido de acordo com uma arquitectura baseada nesta norma, as características do osciloscópio são descritas numa estrutura de dados denominada Transducer Electronic Data Sheet (TEDS), e o seu controlo é efectuado utilizando um conjunto de comandos normalizados. O osciloscópio implementa um conjunto de características e funcionalidades básicas, todas verificadas experimentalmente. Destas, destaca-se uma largura de banda de 575kHz, um intervalo de medição de 0.4V a 2.9V, a possibilidade de se definir um conjunto de escalas horizontais, o nível e declive de sincronismo e o modo de acoplamento com o circuito sob análise. Arquitecturalmente, o osciloscópio é constituído por um módulo especificado com a linguagem de descrição de hardware (HDL, Hardware Description Language) Verilog e por uma interface desenvolvida na linguagem de programação Java®. O módulo é embutido numa FPGA, definindo todo o processamento do osciloscópio. A interface permite o seu controlo e a representação do sinal medido. Durante o projecto foi utilizado um conversor Analógico/Digital (A/D) com uma frequência máxima de amostragem de 1.5MHz e 14 bits de resolução que, devido às suas limitações, obrigaram à implementação de um sistema de interpolação multi-estágio com filtros digitais.
Resumo:
In this paper we address an order processing optimization problem known as minimization of open stacks (MOSP). We present an integer pro gramming model, based on the existence of a perfect elimination scheme in interval graphs, which finds an optimal sequence for the costumers orders.
Resumo:
A velocidade de difusão de conteúdos numa plataforma web, assume uma elevada relevância em serviços onde a informação se pretende atualizada e em tempo real. Este projeto de Mestrado, apresenta uma abordagem de um sistema distribuído de recolher e difundir resultados em tempo real entre várias plataformas, nomeadamente sistemas móveis. Neste contexto, tempo real entende-se como uma diferença de tempo nula entre a recolha e difusão, ignorando fatores que não podem ser controlados pelo sistema, como latência de comunicação e tempo de processamento. Este projeto tem como base uma arquitetura existente de processamento e publicação de resultados desportivos, que apresentava alguns problemas relacionados com escalabilidade, segurança, tempos de entrega de resultados longos e sem integração com outras plataformas. Ao longo deste trabalho procurou-se investigar fatores que condicionassem a escalabilidade de uma aplicação web dando ênfase à implementação de uma solução baseada em replicação e escalabilidade horizontal. Procurou-se também apresentar uma solução de interoperabilidade entre sistemas e plataformas heterogêneas, mantendo sempre elevados níveis de performance e promovendo a introdução de plataformas móveis no sistema. De várias abordagens existentes para comunicação em tempo real sobre uma plataforma web, adotou-se um implementação baseada em WebSocket que elimina o tempo desperdiçado entre a recolha de informação e sua difusão. Neste projeto é descrito o processo de implementação da API de recolha de dados (Collector), da biblioteca de comunicação com o Collector, da aplicação web (Publisher) e sua API, da biblioteca de comunicação com o Publisher e por fim a implementação da aplicação móvel multi-plataforma. Com os componentes criados, avaliaram-se os resultados obtidos com a nova arquitetura de forma a aferir a escalabilidade e performance da solução criada e sua adaptação ao sistema existente.
Resumo:
This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
This document presents a tool able to automatically gather data provided by real energy markets and to generate scenarios, capture and improve market players’ profiles and strategies by using knowledge discovery processes in databases supported by artificial intelligence techniques, data mining algorithms and machine learning methods. It provides the means for generating scenarios with different dimensions and characteristics, ensuring the representation of real and adapted markets, and their participating entities. The scenarios generator module enhances the MASCEM (Multi-Agent Simulator of Competitive Electricity Markets) simulator, endowing a more effective tool for decision support. The achievements from the implementation of the proposed module enables researchers and electricity markets’ participating entities to analyze data, create real scenarios and make experiments with them. On the other hand, applying knowledge discovery techniques to real data also allows the improvement of MASCEM agents’ profiles and strategies resulting in a better representation of real market players’ behavior. This work aims to improve the comprehension of electricity markets and the interactions among the involved entities through adequate multi-agent simulation.
Resumo:
Recent changes in electricity markets (EMs) have been potentiating the globalization of distributed generation. With distributed generation the number of players acting in the EMs and connected to the main grid has grown, increasing the market complexity. Multi-agent simulation arises as an interesting way of analysing players’ behaviour and interactions, namely coalitions of players, as well as their effects on the market. MASCEM was developed to allow studying the market operation of several different players and MASGriP is being developed to allow the simulation of the micro and smart grid concepts in very different scenarios This paper presents a methodology based on artificial intelligence techniques (AI) for the management of a micro grid. The use of fuzzy logic is proposed for the analysis of the agent consumption elasticity, while a case based reasoning, used to predict agents’ reaction to price changes, is an interesting tool for the micro grid operator.
Resumo:
The rising usage of distributed energy resources has been creating several problems in power systems operation. Virtual Power Players arise as a solution for the management of such resources. Additionally, approaching the main network as a series of subsystems gives birth to the concepts of smart grid and micro grid. Simulation, particularly based on multi-agent technology is suitable to model all these new and evolving concepts. MASGriP (Multi-Agent Smart Grid simulation Platform) is a system that was developed to allow deep studies of the mentioned concepts. This paper focuses on a laboratorial test bed which represents a house managed by a MASGriP player. This player is able to control a real installation, responding to requests sent by the system operators and reacting to observed events depending on the context.
Resumo:
Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors research group has developed three multi-agent systems: MASCEM, which simulates the electricity markets; ALBidS that works as a decision support system for market players; and MASGriP, which simulates the internal operations of smart grids. To take better advantage of these systems, their integration is mandatory. For this reason, is proposed the development of an upper-ontology which allows an easier cooperation and adequate communication between them. Additionally, the concepts and rules defined by this ontology can be expanded and complemented by the needs of other simulation and real systems in the same areas as the mentioned systems. Each system’s particular ontology must be extended from this top-level ontology.