193 resultados para Intelligent mechatronics
Resumo:
This paper presents a new architecture for the MASCEM, a multi-agent electricity market simulator. This is implemented in a Prolog which is integrated in the JAVA program by using the LPA Win-Prolog Intelligence Server (IS) provides a DLL interface between Win-Prolog and other applications. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. VPPs can reinforce the importance of these generation technologies making them valuable in electricity markets.
Resumo:
This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimization techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Players (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper details some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study based on real data.
Resumo:
Electricity market players operating in a liberalized environment require adequate decision support tools, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. This paper deals with short-term predication of day-ahead spinning reserve (SR) requirement that helps the ISO to make effective and timely decisions. Based on these forecasted information, market participants can use strategic bidding for day-ahead SR market. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.
Resumo:
In the context of electricity markets, transmission pricing is an important tool to achieve an efficient operation of the electricity system. The electricity market is influenced by several factors; however the transmission network management is one of the most important aspects, because the network is a natural monopoly. The transmission tariffs can help to regulate the market, for this reason transmission tariffs must follow strict criteria. This paper presents the following methods to tariff the use of transmission networks by electricity market players: Post-Stamp Method; MW-Mile Method Distribution Factors Methods; Tracing Methodology; Bialek’s Tracing Method and Locational Marginal Price. A nine bus transmission network is used to illustrate the application of the tariff methods.
Resumo:
In health care there has been a growing interest and investment in new tools to have a constant monitoring of patients. The increasing of average life ex-pectation and, consequently, the costs in health care due to elderly population are the motivation for this investment. However, healthmonitoring is not only important to elderly people, it can be also applied to people with cognitive disabilities. In this article we present some systems, which try to support these persons on doing their day-to-day activities and how it can improve their life quality. Also, we present an idea to a project that tries to help the persons with cognitive disabilities by providing assistance in geo-guidance and keep their caregivers aware of their location.
Resumo:
Control Centre operators are essential to assure a good performance of Power Systems. Operators’ actions are critical in dealing with incidents, especially severe faults, like blackouts. In this paper we present an Intelligent Tutoring approach for training Portuguese Control Centre operators in incident analysis and diagnosis, and service restoration of Power Systems, offering context awareness and an easy integration in the working environment.
Resumo:
Shopping centers present a rich and heterogeneous environment, where IT systems can be implemented in order to support the needs of its actors. However, due to the environment complexity, several feasibility issues emerge when designing both the logical and physical architecture of such systems. Additionally, the system must be able to cope with the individual needs of each actor, and provide services that are easily adopted by them, taking into account several sociological and economical aspects. In this sense, we present an overview of current support systems for shopping center environments. From this overview, a high-level model of the domain (involving actors and services) is described along with challenges and possible features in the context of current Semantic Web, mobile device and sensor technologies.
Resumo:
In this paper we present a mobile recommendation and planning system, named PSiS Mobile. It is designed to provide effective support during a tourist visit through context-aware information and recommendations about points of interest, exploiting tourist preferences and context. Designing a tool like this brings several challenges that must be addressed. We discuss how these challenges have been overcame, present the overall system architecture, since this mobile application extends the PSiS project website, and the mobile application architecture.
Resumo:
In the context of previous publications, we propose a new lightweight UM process, intended to work as a tourism recommender system in a commercial environment. The new process tackles issues like cold start, gray sheep and over specialization through a rich user model and the application of a gradual forgetting function to the collected user action history. Also, significant performance improvements were achieved regarding the previously proposed UM process.
Resumo:
This paper introduces the PCMAT platform project and, in particular, one of its components, the PCMAT Metadata Authoring Tool. This is an educational web application that allows the project metadata creators to write the metadata associated to each learning object without any concern for the metadata schema semantics. Furthermore it permits the project managers to add or delete elements to the schema, without having to rewrite or compile any code.
Resumo:
The aim of this paper is to present an adaptation model for an Adaptive Educational Hypermedia System, PCMAT. The adaptation of the application is based on progressive self-assessment (exercises, tasks, and so on) and applies the constructivist learning theory and the learning styles theory. Our objective is the creation of a better, more adequate adaptation model that takes into account the complexities of different users.
Resumo:
As the time goes on, it is a question of common sense to involve in the process of decision making people scattered around the globe. Groups are created in a formal or informal way, exchange ideas or engage in a process of argumentation and counterargumentation, negotiate, cooperate, collaborate or even discuss techniques and/or methodologies for problem solving. In this work it is proposed an agent-based architecture to support a ubiquitous group decision support system, i.e. based on the concept of agent, which is able to exhibit intelligent, and emotional-aware behaviour, and support argumentation, through interaction with individual persons or groups. It is enforced the paradigm of Mixed Initiative Systems, so the initiative is to be pushed by human users and/or intelligent agents.
Resumo:
In a world increasingly conscientious about environmental effects, power and energy systems are undergoing huge transformations. Electric energy produced from power plants is transmitted and distributed to end users through a power grid. The power industry performs the engineering design, installation, operation, and maintenance tasks to provide a high-quality, secure energy supply while accounting for its systems’ abilities to withstand uncertain events, such as weather-related outages. Competitive, deregulated electricity markets and new renewable energy sources, however, have further complicated this already complex infrastructure.Sustainable development has also been a challenge for power systems. Recently, there has been a signifi cant increase in the installation of distributed generations, mainly based on renewable resources such as wind and solar. Integrating these new generation systems leads to more complexity. Indeed, the number of generation sources greatly increases as the grid embraces numerous smaller and distributed resources. In addition, the inherent uncertainties of wind and solar energy lead to technical challenges such as forecasting, scheduling, operation, control, and risk management. In this special issue introductory article, we analyze the key areas in this field that can benefi t most from AI and intelligent systems now and in the future.We also identify new opportunities for cross-fertilization between power systems and energy markets and intelligent systems researchers.
Resumo:
Group decision making plays an important role in organizations, especially in the present-day economy that demands high-quality, yet quick decisions. Group decision-support systems (GDSSs) are interactive computer-based environments that support concerted, coordinated team efforts toward the completion of joint tasks. The need for collaborative work in organizations has led to the development of a set of general collaborative computer-supported technologies and specific GDSSs that support distributed groups (in time and space) in various domains. However, each person is unique and has different reactions to various arguments. Many times a disagreement arises because of the way we began arguing, not because of the content itself. Nevertheless, emotion, mood, and personality factors have not yet been addressed in GDSSs, despite how strongly they influence results. Our group’s previous work considered the roles that emotion and mood play in decision making. In this article, we reformulate these factors and include personality as well. Thus, this work incorporates personality, emotion, and mood in the negotiation process of an argumentbased group decision-making process. Our main goal in this work is to improve the negotiation process through argumentation using the affective characteristics of the involved participants. Each participant agent represents a group decision member. This representation lets us simulate people with different personalities. The discussion process between group members (agents) is made through the exchange of persuasive arguments. Although our multiagent architecture model4 includes two types of agents—the facilitator and the participant— this article focuses on the emotional, personality, and argumentation components of the participant agent.
Resumo:
Involving groups in important management processes such as decision making has several advantages. By discussing and combining ideas, counter ideas, critical opinions, identified constraints, and alternatives, a group of individuals can test potentially better solutions, sometimes in the form of new products, services, and plans. In the past few decades, operations research, AI, and computer science have had tremendous success creating software systems that can achieve optimal solutions, even for complex problems. The only drawback is that people don’t always agree with these solutions. Sometimes this dissatisfaction is due to an incorrect parameterization of the problem. Nevertheless, the reasons people don’t like a solution might not be quantifiable, because those reasons are often based on aspects such as emotion, mood, and personality. At the same time, monolithic individual decisionsupport systems centered on optimizing solutions are being replaced by collaborative systems and group decision-support systems (GDSSs) that focus more on establishing connections between people in organizations. These systems follow a kind of social paradigm. Combining both optimization- and socialcentered approaches is a topic of current research. However, even if such a hybrid approach can be developed, it will still miss an essential point: the emotional nature of group participants in decision-making tasks. We’ve developed a context-aware emotion based model to design intelligent agents for group decision-making processes. To evaluate this model, we’ve incorporated it in an agent-based simulator called ABS4GD (Agent-Based Simulation for Group Decision), which we developed. This multiagent simulator considers emotion- and argument based factors while supporting group decision-making processes. Experiments show that agents endowed with emotional awareness achieve agreements more quickly than those without such awareness. Hence, participant agents that integrate emotional factors in their judgments can be more successful because, in exchanging arguments with other agents, they consider the emotional nature of group decision making.