106 resultados para Fuzzy decision support system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electricity market restructuring, and its worldwide evolution into regional and even continental scales, along with the increasing necessity for an adequate integration of renewable energy sources, is resulting in a rising complexity in power systems operation. Several power system simulators have been developed in recent years with the purpose of helping operators, regulators, and involved players to understand and deal with this complex and constantly changing environment. The main contribution of this paper is given by the integration of several electricity market and power system models, respecting to the reality of different countries. This integration is done through the development of an upper ontology which integrates the essential concepts necessary to interpret all the available information. The continuous development of Multi-Agent System for Competitive Electricity Markets platform provides the means for the exemplification of the usefulness of this ontology. A case study using the proposed multi-agent platform is presented, considering a scenario based on real data that simulates the European Electricity Market environment, and comparing its performance using different market mechanisms. The main goal is to demonstrate the advantages that the integration of various market models and simulation platforms have for the study of the electricity markets’ evolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A liberalização dos mercados de energia elétrica e a crescente integração dos recursos energéticos distribuídos nas redes de distribuição, nomeadamente as unidades de produção distribuída, os sistemas de controlo de cargas através dos programas de demand response, os sistemas de armazenamento e os veículos elétricos, representaram uma evolução no paradigma de operação e gestão dos sistemas elétricos. Este novo paradigma de operação impõe o desenvolvimento de novas metodologias de gestão e controlo que permitam a integração de todas as novas tecnologias de forma eficiente e sustentável. O principal contributo deste trabalho reside no desenvolvimento de metodologias para a gestão de recursos energéticos no contexto de redes inteligentes, que contemplam três horizontes temporais distintos (24 horas, 1 hora e 5 minutos). As metodologias consideram os escalonamentos anteriores assim como as previsões atualizadas de forma a melhorar o desempenho total do sistema e consequentemente aumentar a rentabilidade dos agentes agregadores. As metodologias propostas foram integradas numa ferramenta de simulação, que servirá de apoio à decisão de uma entidade agregadora designada por virtual power player. Ao nível das metodologias desenvolvidas são propostos três algoritmos de gestão distintos, nomeadamente para a segunda (1 hora) e terceira fase (5 minutos) da ferramenta de gestão, diferenciados pela influência que os períodos antecedentes e seguintes têm no período em escalonamento. Outro aspeto relevante apresentado neste documento é o teste e a validação dos modelos propostos numa plataforma de simulação comercial. Para além das metodologias propostas, a aplicação permitiu validar os modelos dos equipamentos considerados, nomeadamente, ao nível das redes de distribuição e dos recursos energéticos distribuidos. Nesta dissertação são apresentados três casos de estudos, cada um com diferentes cenários referentes a cenários de operação futuros. Estes casos de estudos são importantes para verificar a viabilidade da implementação das metodologias e algoritmos propostos. Adicionalmente são apresentadas comparações das metodologias propostas relativamente aos resultados obtidos, complexidade de gestão em ambiente de simulação para as diferentes fases da ferramenta proposta e os benefícios e inconvenientes no uso da ferramenta proposta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os Sistemas de Apoio à Tomada de Decisão em Grupo (SADG) surgiram com o objetivo de apoiar um conjunto de decisores no processo de tomada de decisão. Uma das abordagens mais comuns na literatura para a implementação dos SADG é a utilização de Sistemas Multi-Agente (SMA). Os SMA permitem refletir com maior transparência o contexto real, tanto na representação que cada agente faz do decisor que representa como no formato de comunicação utilizado. Com o crescimento das organizações, atualmente vive-se uma viragem no conceito de tomada de decisão. Cada vez mais, devido a questões como: o estilo de vida, os mercados globais e o tipo de tecnologias disponíveis, faz sentido falar de decisão ubíqua. Isto significa que o decisor deverá poder utilizar o sistema a partir de qualquer local, a qualquer altura e através dos mais variados tipos de dispositivos eletrónicos tais como tablets, smartphones, etc. Neste trabalho é proposto um novo modelo de argumentação, adaptado ao contexto da tomada de decisão ubíqua para ser utilizado por um SMA na resolução de problemas multi-critério. É assumido que cada agente poderá utilizar um estilo de comportamento que afeta o modo como esse agente interage com outros agentes em situações de conflito. Sendo assim, pretende-se estudar o impacto da utilização de estilos de comportamento ao longo do processo da tomada de decisão e perceber se os agentes modelados com estilos de comportamento conseguem atingir o consenso mais facilmente quando comparados com agentes que não apresentam nenhum estilo de comportamento. Pretende-se ainda estudar se o número de argumentos trocados entre os agentes é proporcional ao nível de consenso final após o processo de tomada de decisão. De forma a poder estudar as hipóteses de investigação desenvolveu-se um protótipo de um SADG, utilizando um SMA. Desenvolveu-se ainda uma framework de argumentação que foi adaptada ao protótipo desenvolvido. Os resultados obtidos permitiram validar as hipóteses definidas neste trabalho tendo-se concluído que os agentes modelados com estilos de comportamento conseguem na maioria das vezes atingir um consenso mais facilmente comparado com agentes que não apresentam nenhum estilo de comportamento e que o número de argumentos trocados entre os agentes durante o processo de tomada de decisão não é proporcional ao nível de consenso final.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudo foi desenvolvido em contexto empresarial e apresenta o levantamento de uma oportunidade de melhoria conjunta nos processos de gestão de stocks, compras e logística com o objetivo de otimizar a seleção e envio dos artigos com necessidade de reposição. O caso de estudo apresentado neste documento retrata o circuito logístico entre uma empresa sediada em Angola e outra em Portugal. A primeira dedica-se à venda por grosso e a retalho que é fornecida pela segunda, onde também está concentrada a gestão de aprovisionamento. Integrando uma sociedade menos desenvolvida como Angola, a delicadeza e complexidade dos problemas associam-se à incerteza, tornando um ambiente propício para a identificação e implantação de melhorias nos processos de decisão, colmatando a dependência de apoio em sistemas e serviços externos. Com uma logística de abastecimento intercontinental, a seleção e envio de mercadoria é uma preocupação dos gestores, uma vez que o tempo de fornecimento é longo e poderá afetar a performance das vendas caso seja uma decisão não sustentada. Com o foco no apoio à decisão, desenvolveu-se uma ferramenta que incorpora os detalhes da atividade empresarial que permite selecionar os artigos para reposição, maximizando o seu potencial valor de vendas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A gestão e monitorização de redes é uma necessidade fundamental em qualquer organização, quer seja grande ou pequena. A sua importância tem de ser refletida na eficiência e no aumento de informação útil disponível, contribuindo para uma maior eficácia na realização das tarefas em ambientes tecnologicamente avançados, com elevadas necessidades de desempenho e disponibilidade dos recursos dessa tecnologia. Para alcançar estes objetivos é fundamental possuir as ferramentas de gestão de redes adequadas. Nomeadamente ferramentas de monitorização. A classificação de tráfego também se revela fundamental para garantir a qualidade das comunicações e prevenir ataques indesejados aumentando assim a segurança nas comunicações. Paralelamente, principalmente em organizações grandes, é relevante a inventariação dos equipamentos utilizados numa rede. Neste trabalho pretende-se implementar e colocar em funcionamento um sistema autónomo de monitorização, classificação de protocolos e realização de inventários. Todas estas ferramentas têm como objetivo apoiar os administradores e técnicos de sistemas informáticos. Os estudos das aplicações que melhor se adequam à realidade da organização culminaram num acréscimo de conhecimento e aprendizagem que irão contribuir para um melhor desempenho da rede em que o principal beneficiário será o cidadão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Business Intelligence (BI) is one emergent area of the Decision Support Systems (DSS) discipline. Over the last years, the evolution in this area has been considerable. Similarly, in the last years, there has been a huge growth and consolidation of the Data Mining (DM) field. DM is being used with success in BI systems, but a truly DM integration with BI is lacking. Therefore, a lack of an effective usage of DM in BI can be found in some BI systems. An architecture that pretends to conduct to an effective usage of DM in BI is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The large increase of renewable energy sources and Distributed Generation (DG) of electricity gives place to the Virtual Power Producer (VPP) concept. VPPs may turn electricity generation by renewable sources valuable in electricity markets. Information availability and adequate decision-support tools are crucial for achieving VPPs’ goals. This involves information concerning associated producers and market operation. This paper presents ViProd, a simulation tool that allows simulating VPPs operation, focusing mainly in the information requirements for adequate decision making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, power systems have experienced many changes in their paradigm. The introduction of new players in the management of distributed generation leads to the decentralization of control and decision-making, so that each player is able to play in the market environment. In the new context, it will be very relevant that aggregator players allow midsize, small and micro players to act in a competitive environment. In order to achieve their objectives, virtual power players and single players are required to optimize their energy resource management process. To achieve this, it is essential to have financial resources capable of providing access to appropriate decision support tools. As small players have difficulties in having access to such tools, it is necessary that these players can benefit from alternative methodologies to support their decisions. This paper presents a methodology, based on Artificial Neural Networks (ANN), and intended to support smaller players. In this case the present methodology uses a training set that is created using energy resource scheduling solutions obtained using a mixed-integer linear programming (MIP) approach as the reference optimization methodology. The trained network is used to obtain locational marginal prices in a distribution network. The main goal of the paper is to verify the accuracy of the ANN based approach. Moreover, the use of a single ANN is compared with the use of two or more ANN to forecast the locational marginal price.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the restructuring of the energy sector in industrialized countries there is an increased complexity in market players’ interactions along with emerging problems and new issues to be addressed. Decision support tools that facilitate the study and understanding of these markets are extremely useful to provide players with competitive advantage. In this context arises MASCEM, a multi-agent simulator for competitive electricity markets. It is essential to reinforce MASCEM with the ability to recreate electricity markets reality in the fullest possible extent, making it able to simulate as many types of markets models and players as possible. This paper presents the development of the Balancing Market in MASCEM. A key module to the study of competitive electricity markets, as it has well defined and distinct characteristics previously implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a simulated annealing (SA) approach to address energy resources management from the point of view of a virtual power player (VPP) operating in a smart grid. Distributed generation, demand response, and gridable vehicles are intelligently managed on a multiperiod basis according to V2G user´s profiles and requirements. Apart from using the aggregated resources, the VPP can also purchase additional energy from a set of external suppliers. The paper includes a case study for a 33 bus distribution network with 66 generators, 32 loads, and 1000 gridable vehicles. The results of the SA approach are compared with a methodology based on mixed-integer nonlinear programming. A variation of this method, using ac load flow, is also used and the results are compared with the SA solution using network simulation. The proposed SA approach proved to be able to obtain good solutions in low execution times, providing VPPs with suitable decision support for the management of a large number of distributed resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents MASCEM - a multi-agent based electricity market simulator. MASCEM uses game theory, machine learning techniques, scenario analysis and optimisation techniques to model market agents and to provide them with decision-support. This paper mainly focus on the MASCEM ability to provide the means to model and simulate Virtual Power Producers (VPP). VPPs are represented as a coalition of agents, with specific characteristics and goals. The paper detail some of the most important aspects considered in VPP formation and in the aggregation of new producers and includes a case study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power systems operation in a liberalized environment requires that market players have access to adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper deals with ancillary services negotiation in electricity markets. The proposed concepts and methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of ancillary services using two different methods (Linear Programming and Genetic Algorithm approaches) is included in the paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recommendation systems have been growing in number for the last fifteen years. To evolve and adapt to the demands of the actual society, many paradigms emerged giving birth to even more paradigms and hybrid approaches. Mobile devices have also been under an incredible growth rate in every business area, and there are already lots of mobile based systems to assist tourists. This explosive growth gave birth to different mobile applications, each having their own advantages and disadvantages. Since recommendation and mobile systems might as well be integrated, this work intends to present the current state of the art in tourism mobile and recommendation systems, as well as to state their advantages and disadvantages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adequate decision support tools are required by electricity market players operating in a liberalized environment, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services (AS) represent a good negotiation opportunity that must be considered by market players. Based on the ancillary services forecasting, market participants can use strategic bidding for day-ahead ancillary services markets. For this reason, ancillary services market simulation is being included in MASCEM, a multi-agent based electricity market simulator that can be used by market players to test and enhance their bidding strategies. The paper presents the methodology used to undertake ancillary services forecasting, based on an Artificial Neural Network (ANN) approach. ANNs are used to day-ahead prediction of non-spinning reserve (NS), regulation-up (RU), and regulation down (RD). Spinning reserve (SR) is mentioned as past work for comparative analysis. A case study based on California ISO (CAISO) data is included; the forecasted results are presented and compared with CAISO published forecast.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity market players operating in a liberalized environment requires access to an adequate decision support tool, allowing them to consider all the business opportunities and take strategic decisions. Ancillary services represent a good negotiation opportunity that must be considered by market players. For this, decision support tools must include ancillary market simulation. This paper proposes two different methods (Linear Programming and Genetic Algorithm approaches) for ancillary services dispatch. The methodologies are implemented in MASCEM, a multi-agent based electricity market simulator. A test case concerning the dispatch of Regulation Down, Regulation Up, Spinning Reserve and Non-Spinning Reserve services is included in this paper.