77 resultados para portfolio optimization
Resumo:
Trihalomethanes (THMs) are widely referred and studied as disinfection by-products (DBPs). The THMs that are most commonly detected are chloroform (TCM), bromodichloromethane (BDCM), chlorodibromomethane (CDBM), and bromoform (TBM). Several studies regarding the determination of THMs in swimming pool water and air samples have been published. This paper reviews the most recent work in this field, with a special focus on water and air sampling, sample preparation and analytical determination methods. An experimental study has been developed in order to optimize the headspace solid-phasemicroextraction (HS-SPME) conditions of TCM, BDCM, CDBM and TBM from water samples using a 23 factorial design. An extraction temperature of 45 °C, for 25min, and a desorption time of 5 min were found to be the best conditions. Analysis was performed by gas chromatography with an electron capture detector (GC-ECD). The method was successfully applied to a set of 27 swimming pool water samples collected in the Oporto area (Portugal). TCM was the only THM detected with levels between 4.5 and 406.5 μg L−1. Four of the samples exceeded the guideline value for total THMs in swimming pool water (100 μgL−1) indicated by the Portuguese Health Authority.
Resumo:
This study aims to optimize the water quality monitoring of a polluted watercourse (Leça River, Portugal) through the principal component analysis (PCA) and cluster analysis (CA). These statistical methodologies were applied to physicochemical, bacteriological and ecotoxicological data (with the marine bacterium Vibrio fischeri and the green alga Chlorella vulgaris) obtained with the analysis of water samples monthly collected at seven monitoring sites and during five campaigns (February, May, June, August, and September 2006). The results of some variables were assigned to water quality classes according to national guidelines. Chemical and bacteriological quality data led to classify Leça River water quality as “bad” or “very bad”. PCA and CA identified monitoring sites with similar pollution pattern, giving to site 1 (located in the upstream stretch of the river) a distinct feature from all other sampling sites downstream. Ecotoxicity results corroborated this classification thus revealing differences in space and time. The present study includes not only physical, chemical and bacteriological but also ecotoxicological parameters, which broadens new perspectives in river water characterization. Moreover, the application of PCA and CA is very useful to optimize water quality monitoring networks, defining the minimum number of sites and their location. Thus, these tools can support appropriate management decisions.
Resumo:
Coffee silverskin is a major roasting by-product that could be valued as a source of antioxidant compounds. The effect of the major variables (solvent polarity, temperature and extraction time) affecting the extraction yields of bioactive compounds and antioxidant activity of silverskin extracts was evaluated. The extracts composition varied significantly with the extraction conditions used. A factorial experimental design showed that the use of a hydroalcoholic solvent (50%:50%) at 40 °C for 60 min is a sustainable option to maximize the extraction yield of bioactive compounds and the antioxidant capacity of extracts. Using this set of conditions it was possible to obtain extracts containing total phenolics (302.5 ± 7.1 mg GAE/L), tannins (0.43 ± 0.06 mg TAE/L), and flavonoids (83.0 ± 1.4 mg ECE/L), exhibiting DPPHradical dot scavenging activity (326.0 ± 5.7 mg TE/L) and ferric reducing antioxidant power (1791.9 ± 126.3 mg SFE/L). These conditions allowed, in comparison with other “more effective” for some individual parameters, a cost reduction, saving time and energy.
Resumo:
We agree with Ling-Yun et al. [5] and Zhang and Duan comments [2] about the typing error in equation (9) of the manuscript [8]. The correct formula was initially proposed in [6, 7]. The formula adopted in our algorithms discussed in our papers [1, 3, 4, 8] is, in fact, the following: ...
Resumo:
In this paper we address an order processing optimization problem known as minimization of open stacks (MOSP). We present an integer pro gramming model, based on the existence of a perfect elimination scheme in interval graphs, which finds an optimal sequence for the costumers orders.
Resumo:
This paper presents a methodology for multi-objective day-ahead energy resource scheduling for smart grids considering intensive use of distributed generation and Vehicle- To-Grid (V2G). The main focus is the application of weighted Pareto to a multi-objective parallel particle swarm approach aiming to solve the dual-objective V2G scheduling: minimizing total operation costs and maximizing V2G income. A realistic mathematical formulation, considering the network constraints and V2G charging and discharging efficiencies is presented and parallel computing is applied to the Pareto weights. AC power flow calculation is included in the metaheuristics approach to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
The smart grid concept is a key issue in the future power systems, namely at the distribution level, with deep concerns in the operation and planning of these systems. Several advantages and benefits for both technical and economic operation of the power system and of the electricity markets are recognized. The increasing integration of demand response and distributed generation resources, all of them mostly with small scale distributed characteristics, leads to the need of aggregating entities such as Virtual Power Players. The operation business models become more complex in the context of smart grid operation. Computational intelligence methods can be used to give a suitable solution for the resources scheduling problem considering the time constraints. This paper proposes a methodology for a joint dispatch of demand response and distributed generation to provide energy and reserve by a virtual power player that operates a distribution network. The optimal schedule minimizes the operation costs and it is obtained using a particle swarm optimization approach, which is compared with a deterministic approach used as reference methodology. The proposed method is applied to a 33-bus distribution network with 32 medium voltage consumers and 66 distributed generation units.
Resumo:
This paper presents a decision support tool methodology to help virtual power players (VPPs) in the Smart Grid (SGs) context to solve the day-ahead energy resource scheduling considering the intensive use of Distributed Generation (DG) and Vehicle-To-Grid (V2G). The main focus is the application of a new hybrid method combing a particle swarm approach and a deterministic technique based on mixedinteger linear programming (MILP) to solve the day-ahead scheduling minimizing total operation costs from the aggregator point of view. A realistic mathematical formulation, considering the electric network constraints and V2G charging and discharging efficiencies is presented. Full AC power flow calculation is included in the hybrid method to allow taking into account the network constraints. A case study with a 33-bus distribution network and 1800 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
The recent changes concerning the consumers’ active participation in the efficient management of load devices for one’s own interest and for the interest of the network operator, namely in the context of demand response, leads to the need for improved algorithms and tools. A continuous consumption optimization algorithm has been improved in order to better manage the shifted demand. It has been done in a simulation and user-interaction tool capable of being integrated in a multi-agent smart grid simulator already developed, and also capable of integrating several optimization algorithms to manage real and simulated loads. The case study of this paper enhances the advantages of the proposed algorithm and the benefits of using the developed simulation and user interaction tool.
Resumo:
The concept of demand response has drawing attention to the active participation in the economic operation of power systems, namely in the context of recent electricity markets and smart grid models and implementations. In these competitive contexts, aggregators are necessary in order to make possible the participation of small size consumers and generation units. The methodology proposed in the present paper aims to address the demand shifting between periods, considering multi-period demand response events. The focus is given to the impact in the subsequent periods. A Virtual Power Player operates the network, aggregating the available resources, and minimizing the operation costs. The illustrative case study included is based on a scenario of 218 consumers including generation sources.
Resumo:
Demand response programs and models have been developed and implemented for an improved performance of electricity markets, taking full advantage of smart grids. Studying and addressing the consumers’ flexibility and network operation scenarios makes possible to design improved demand response models and programs. The methodology proposed in the present paper aims to address the definition of demand response programs that consider the demand shifting between periods, regarding the occurrence of multi-period demand response events. The optimization model focuses on minimizing the network and resources operation costs for a Virtual Power Player. Quantum Particle Swarm Optimization has been used in order to obtain the solutions for the optimization model that is applied to a large set of operation scenarios. The implemented case study illustrates the use of the proposed methodology to support the decisions of the Virtual Power Player in what concerns the duration of each demand response event.
Resumo:
10th Conference on Telecommunications (Conftele 2015), Aveiro, Portugal.
Resumo:
This work proposes a real-time algorithm to generate a trajectory for a 2 link planar robotic manipulator. The objective is to minimize the space/time ripple and the energy requirements or the time duration in the robot trajectories. The proposed method uses an off line genetic algorithm to calculate every possible trajectory between all cells of the workspace grid. The resultant trajectories are saved in several trees. Then any trajectory requested is constructed in real-time, from these trees. The article presents the results for several experiments.
Resumo:
Redundant manipulators have some advantages when compared with classical arms because they allow the trajectory optimization, both on the free space and on the presence of abstacles, and the resolution of singularities. For this type of manipulators, several kinetic algorithms adopt generalized inverse matrices. In this line of thought, the generalized inverse control scheme is tested through several experiments that reveal the difficulties that often arise. Motivated by theseproblems this paper presents a new method that ptimizes the manipulability through a least squre polynomialapproximation to determine the joints positions. Moreover, the article studies influence on the dynamics, when controlling redundant and hyper-redundant manipulators. The experiment confirm the superior performance of the proposed algorithm for redundant and hyper-redundant manipulators, revealing several fundamental properties of the chaotic phenomena, and gives a deeper insight towards the future development of superior trajectory control algorithms.