108 resultados para TDMA protocols
Resumo:
We discuss the development of a simple globally prioritized multi-channel medium access control (MAC) protocol for wireless networks. This protocol provides “hard” pre-run-time real-time guarantees to sporadic message streams, exploits a very large fraction of the capacity of all channels for “hard” real-time traffic and also makes it possible to fully utilize the channels with non real-time traffic when hard real-time messages do not request to be transmitted. The potential of such protocols for real-time applications is discussed and a schedulability analysis is also presented.
Resumo:
Wireless Sensor Networks (WSNs) are highly distributed systems in which resource allocation (bandwidth, memory) must be performed efficiently to provide a minimum acceptable Quality of Service (QoS) to the regions where critical events occur. In fact, if resources are statically assigned independently from the location and instant of the events, these resources will definitely be misused. In other words, it is more efficient to dynamically grant more resources to sensor nodes affected by critical events, thus providing better network resource management and reducing endto- end delays of event notification and tracking. In this paper, we discuss the use of a WSN management architecture based on the active network management paradigm to provide the real-time tracking and reporting of dynamic events while ensuring efficient resource utilization. The active network management paradigm allows packets to transport not only data, but also program scripts that will be executed in the nodes to dynamically modify the operation of the network. This presumes the use of a runtime execution environment (middleware) in each node to interpret the script. We consider hierarchical (e.g. cluster-tree, two-tiered architecture) WSN topologies since they have been used to improve the timing performance of WSNs as they support deterministic medium access control protocols.
Resumo:
This paper proposes a new strategy to integrate shared resources and precedence constraints among real-time tasks, assuming no precise information on critical sections and computation times is available. The concept of bandwidth inheritance is combined with a capacity sharing and stealing mechanism to efficiently exchange bandwidth among tasks to minimise the degree of deviation from the ideal system’s behaviour caused by inter-application blocking. The proposed Capacity Exchange Protocol (CXP) is simpler than other proposed solutions for sharing resources in open real-time systems since it does not attempt to return the inherited capacity in the same exact amount to blocked servers. This loss of optimality is worth the reduced complexity as the protocol’s behaviour nevertheless tends to be fair and outperforms the previous solutions in highly dynamic scenarios as demonstrated by extensive simulations. A formal analysis of CXP is presented and the conditions under which it is possible to guarantee hard real-time tasks are discussed.
Resumo:
The hidden-node problem has been shown to be a major source of Quality-of-Service (QoS) degradation in Wireless Sensor Networks (WSNs) due to factors such as the limited communication range of sensor nodes, link asymmetry and the characteristics of the physical environment. In wireless contention-based Medium Access Control protocols, if two nodes that are not visible to each other transmit to a third node that is visible to the formers, there will be a collision – usually called hidden-node or blind collision. This problem greatly affects network throughput, energy-efficiency and message transfer delays, which might be particularly dramatic in large-scale WSNs. This paper tackles the hiddennode problem in WSNs and proposes H-NAMe, a simple yet efficient distributed mechanism to overcome it. H-NAMe relies on a grouping strategy that splits each cluster of a WSN into disjoint groups of non-hidden nodes and then scales to multiple clusters via a cluster grouping strategy that guarantees no transmission interference between overlapping clusters. We also show that the H-NAMe mechanism can be easily applied to the IEEE 802.15.4/ZigBee protocols with only minor add-ons and ensuring backward compatibility with the standard specifications. We demonstrate the feasibility of H-NAMe via an experimental test-bed, showing that it increases network throughput and transmission success probability up to twice the values obtained without H-NAMe. We believe that the results in this paper will be quite useful in efficiently enabling IEEE 802.15.4/ZigBee as a WSN protocol
Resumo:
Wireless Sensor Networks (WSNs) have been attracting increasing interests for developing a new generation of embedded systems with great potential for many applications such as surveillance, environment monitoring, emergency medical response and home automation. However, the communication paradigms in WSNs differ from the ones attributed to traditional wireless networks, triggering the need for new communication protocols. In this context, the recently standardised IEEE 802.15.4 protocol presents some potentially interesting features for deployment in wireless sensor network applications, such as power-efficiency, timeliness guarantees and scalability. Nevertheless, when addressing WSN applications with (soft/hard) timing requirements some inherent paradoxes emerge, such as power-efficiency versus timeliness, triggering the need of engineering solutions for an efficient deployment of IEEE 802.15.4 in WSNs. In this technical report, we will explore the most relevant characteristics of the IEEE 802.15.4 protocol for wireless sensor networks and present the most important challenges regarding time-sensitive WSN applications. We also provide some timing performance and analysis of the IEEE 802.15.4 that unveil some directions for resolving the previously mentioned paradoxes.
Resumo:
The ART-WiSe (Architecture for Real-Time communications in Wireless Sensor Networks) framework aims at the design of new communication architectures and mechanisms for time-sensitive Wireless Sensor Networks (WSNs). We adopted a two-tiered architecture where an overlay Wireless Local Area Network (Tier 2) serves as a backbone for a WSN (Tier 1), relying on existing standard communication protocols and commercial-off-the-shell (COTS) technologies – IEEE 802.15.4/ZigBee for Tier 1 and IEEE 802.11 for Tier 2. In this line, a test-bed application is being developed for assessing, validating and demonstrating the ART-WiSe architecture. A pursuit-evasion application was chosen since it fulfils a number of requirements, namely it is feasible and appealing and imposes some stress to the architecture in terms of timeliness. To develop the testbed based on the previously referred technologies, an implementation of the IEEE 8021.5.4/ZigBee protocols is being carried out, since there is no open source available to the community. This paper highlights some relevant aspects of the ART-WiSe architecture, provides some intuition on the protocol stack implementation and presents a general view over the envisaged test-bed application.
Resumo:
With the current complexity of communication protocols, implementing its layers totally in the kernel of the operating system is too cumbersome, and it does not allow use of the capabilities only available in user space processes. However, building protocols as user space processes must not impair the responsiveness of the communication. Therefore, in this paper we present a layer of a communication protocol, which, due to its complexity, was implemented in a user space process. Lower layers of the protocol are, for responsiveness issues, implemented in the kernel. This protocol was developed to support large-scale power-line communication (PLC) with timing requirements.
Resumo:
This project was developed within the ART-WiSe framework of the IPP-HURRAY group (http://www.hurray.isep.ipp.pt), at the Polytechnic Institute of Porto (http://www.ipp.pt). The ART-WiSe – Architecture for Real-Time communications in Wireless Sensor networks – framework (http://www.hurray.isep.ipp.pt/art-wise) aims at providing new communication architectures and mechanisms to improve the timing performance of Wireless Sensor Networks (WSNs). The architecture is based on a two-tiered protocol structure, relying on existing standard communication protocols, namely IEEE 802.15.4 (Physical and Data Link Layers) and ZigBee (Network and Application Layers) for Tier 1 and IEEE 802.11 for Tier 2, which serves as a high-speed backbone for Tier 1 without energy consumption restrictions. Within this trend, an application test-bed is being developed with the objectives of implementing, assessing and validating the ART-WiSe architecture. Particularly for the ZigBee protocol case; even though there is a strong commercial lobby from the ZigBee Alliance (http://www.zigbee.org), there is neither an open source available to the community for this moment nor publications on its adequateness for larger-scale WSN applications. This project aims at fulfilling these gaps by providing: a deep analysis of the ZigBee Specification, mainly addressing the Network Layer and particularly its routing mechanisms; an identification of the ambiguities and open issues existent in the ZigBee protocol standard; the proposal of solutions to the previously referred problems; an implementation of a subset of the ZigBee Network Layer, namely the association procedure and the tree routing on our technological platform (MICAz motes, TinyOS operating system and nesC programming language) and an experimental evaluation of that routing mechanism for WSNs.
Resumo:
The international Electrotechnical Commission (IEC) 61499 architecture incorporated several function block with which distributed control application may be developed, and how these are interpreted and executed. However, due the distributed nature of the control applications, many issues also need to be taken into account. Most of these are due to the new error model and failure modes of the distributed hardware on which the distributed application is executed and also due the incomplete standards definition of the execution models. IEC 61499 frameworks does not clarify how to handle with replication of software and hardware components. In this paper we propose a replication model for IEC 61499 applications and which mechanisms and protocols may be used for their support.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores - Área de Especialização de Telecomunicações
Resumo:
O objectivo da tese é demonstrar a adequação do paradigma dos mercados electrónicos baseados em agentes para transaccionar objectos multimédia em função do perfil dos espectadores. Esta dissertação descreve o projecto realizado no âmbito da plataforma de personalização de conteúdos em construção. O domínio de aplicação adoptado foi a personalização dos intervalos publicitários difundidos pelos distribuidores de conteúdos multimédia, i.e., pretende-se gerar em tempo útil o alinhamento de anúncios publicitários que melhor se adeqúe ao perfil de um espectador ou de um grupo de espectadores. O projecto focou-se no estudo e selecção das tecnologias de suporte, na concepção da arquitectura e no desenvolvimento de um protótipo que permitisse realizar diversas experiências nomeadamente com diferentes estratégias e tipos de mercado. A arquitectura proposta para a plataforma consiste num sistema multiagente organizado em três camadas que disponibiliza interfaces do tipo serviço Web com o exterior. A camada de topo é constituída por agentes de interface com o exterior. Na camada intermédia encontram-se os agentes autónomos que modelam as entidades produtoras e consumidoras de componentes multimédia assim como a entidade reguladora do mercado. Estes agentes registam-se num serviço de registo próprio onde especificam os componentes multimédia que pretendem negociar. Na camada inferior realiza-se o mercado que é constituído por agentes delegados dos agentes da camada superior. O lançamento do mercado é efectuado através de uma interface e consiste na escolha do tipo de mercado e no tipo de itens a negociar. Este projecto centrou-se na realização da camada do mercado e da parte da camada intermédia de apoio às actividades de negociação no mercado. A negociação é efectuada em relação ao preço da transmissão do anúncio no intervalo em preenchimento. Foram implementados diferentes perfis de negociação com tácticas, incrementos e limites de variação de preço distintos. Em termos de protocolos de negociação, adoptou-se uma variante do Iterated Contract Net – o Fixed Iterated Contract Net. O protótipo resultante foi testado e depurado com sucesso.
Resumo:
Mestrado em Engenharia Eletrotécnica e de Computadores - Área de Especialização de Telecomunicações
Resumo:
Mathematical models and statistical analysis are key instruments in soil science scientific research as they can describe and/or predict the current state of a soil system. These tools allow us to explore the behavior of soil related processes and properties as well as to generate new hypotheses for future experimentation. A good model and analysis of soil properties variations, that permit us to extract suitable conclusions and estimating spatially correlated variables at unsampled locations, is clearly dependent on the amount and quality of data and of the robustness techniques and estimators. On the other hand, the quality of data is obviously dependent from a competent data collection procedure and from a capable laboratory analytical work. Following the standard soil sampling protocols available, soil samples should be collected according to key points such as a convenient spatial scale, landscape homogeneity (or non-homogeneity), land color, soil texture, land slope, land solar exposition. Obtaining good quality data from forest soils is predictably expensive as it is labor intensive and demands many manpower and equipment both in field work and in laboratory analysis. Also, the sampling collection scheme that should be used on a data collection procedure in forest field is not simple to design as the sampling strategies chosen are strongly dependent on soil taxonomy. In fact, a sampling grid will not be able to be followed if rocks at the predicted collecting depth are found, or no soil at all is found, or large trees bar the soil collection. Considering this, a proficient design of a soil data sampling campaign in forest field is not always a simple process and sometimes represents a truly huge challenge. In this work, we present some difficulties that have occurred during two experiments on forest soil that were conducted in order to study the spatial variation of some soil physical-chemical properties. Two different sampling protocols were considered for monitoring two types of forest soils located in NW Portugal: umbric regosol and lithosol. Two different equipments for sampling collection were also used: a manual auger and a shovel. Both scenarios were analyzed and the results achieved have allowed us to consider that monitoring forest soil in order to do some mathematical and statistical investigations needs a sampling procedure to data collection compatible to established protocols but a pre-defined grid assumption often fail when the variability of the soil property is not uniform in space. In this case, sampling grid should be conveniently adapted from one part of the landscape to another and this fact should be taken into consideration of a mathematical procedure.
Resumo:
Atualmente, no segmento metro-ferroviário, há uma tendência para que todos os equipamentos que constituem os sistemas auxiliares de uma estação (escadas mecânicas, elevadores, bloqueadores, validadores de bilhética, ventiladores, bombas, entre outros) sejam dotados de inteligência. Tipicamente, um conjunto de equipamentos são ligados a um autómato que permite o controlo local e remoto e é vulgar que, sendo de fabricantes diferentes, suportem tecnologias distintas. Um sistema de supervisão que permita o acesso à informação disponibilizada por cada um dos autómatos, ou à atuação sobre um deles, terá por isso que implementar e suportar diversos protocolos de comunicação de forma a não ficar limitado a um tipo de tecnologia. De forma a diminuir os custos de desenvolvimento e operação de um sistema de supervisão e controlo e facilitar a integração de novos equipamentos, com diferentes características, têm sido procuradas soluções que garantam uma mais fácil comunicação entre os diversos módulos intervenientes. Nesta dissertação são implementadas soluções baseadas em clientes OPC-DA e OPC-AE e no protocolo IEC 60870-5-104, permitindo que os sistemas de supervisão e de controlo comuniquem com os equipamentos através destes três módulos. Os principais aspectos inovadores estão associados à implementação de uma arquitetura multiprotocolo usando as novas tendências de supervisão e controlo baseadas em soluções distribuídas.
Resumo:
Dissertação de Mestrado apresentada ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob orientação do Doutor José Campos Amorim