69 resultados para Riemann-Liouville and Caputo Fractional Derivatives
Resumo:
This paper applies Pseudo Phase Plane (PPP) and Fractional Calculus (FC) mathematical tools for modeling world economies. A challenging global rivalry among the largest international economies began in the early 1970s, when the post-war prosperity declined. It went on, up to now. If some worrying threatens may exist actually in terms of possible ambitious military aggression, invasion, or hegemony, countries’ PPP relative positions can tell something on the current global peaceful equilibrium. A global political downturn of the USA on global hegemony in favor of Asian partners is possible, but can still be not accomplished in the next decades. If the 1973 oil chock has represented the beginning of a long-run recession, the PPP analysis of the last four decades (1972–2012) does not conclude for other partners’ global dominance (Russian, Brazil, Japan, and Germany) in reaching high degrees of similarity with the most developed world countries. The synergies of the proposed mathematical tools lead to a better understanding of the dynamics underlying world economies and point towards the estimation of future states based on the memory of each time series.
Resumo:
This article investigates the limit cycle (LC) prediction of systems with backlash by means of the describing function (DF) when using discrete fractional-order (FO) algorithms. The DF is an approximate method that gives good estimates of LCs. The implementation of FO controllers requires the use of rational approximations, but such realizations produce distinct dynamic types of behavior. This study analyzes the accuracy in the prediction of LCs, namely their amplitude and frequency, when using several different algorithms. To illustrate this problem we use FO-PID algorithms in the control of systems with backlash.
Resumo:
This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades due to the progress in the area of nonlinear dynamics. This article discusses several applications of fractional calculus in science and engineering, namely: the control of heat systems, the tuning of PID controllers based on fractional calculus concepts and the dynamics in hexapod locomotion.
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses a FC perspective in the study of the dynamics and control of some distributed parameter systems.
Resumo:
The theory of fractional calculus goes back to the beginning of thr throry of differential calculus but its inherent complexity postponed the applications of the associated concepts. In the last decade the progress in the areas of chaos and fractals revealed subtle relationships with the fractional calculus leading to an increasing interest in the development of the new paradigm. In the area of automaticcontrol preliminary work has already been carried out but the proposed algorithms are restricted to the frequency domain. The paper discusses the design of fractional-order discrete-time controllers. The algorithms studied adopt the time domein, which makes them suited for z-transform analusis and discrete-time implementation. The performance of discrete-time fractional-order controllers with linear and non-linear systems is also investigated.
Resumo:
Quinoxaline derivatives are an important class of heterocycle compounds, where N replaces some carbon atoms in the ring of naphthalene. Its molecular formula is C8H6N2, formed by the fusion of two aromatic rings, benzene and pyrazine. It is rare in natural state, but their synthesis is easy to perform. In this review the State of the Art will be presented, which includes a summary of the progress made over the past years in the knowledge of the structure and mechanism of the quinoxaline and quinoxaline derivatives, associated medical and biomedical value as well as industrial value. Modifying quinoxaline structure it is possible to obtain a wide variety of biomedical applications, namely antimicrobial activities and chronic and metabolic diseases treatment.
Resumo:
In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.