142 resultados para Optimization algorithms
Resumo:
The present work describes the optimization of a short-term assay, based on the inhibition of the esterase activity of the alga Pseudokirchneriella subcapitata, in a microplate format. The optimization of the staining procedure showed that the incubation of the algal cells with 20 μmolL−1 fluorescein diacetate (FDA) for 40 min allowed discrimination between metabolic active and inactive cells. The shortterm assay was tested using Cu as toxicant. For this purpose, algal cells, in the exponential or stationary phase of growth, were exposed to the heavy metal in growing conditions. After 3 or 6 h, cells were subsequently stained with FDA, using the optimized procedure. For Cu, the 3- and 6-h EC50 values, based on the inhibition of the esterase activity of algal cells in the exponential phase of growth, were 209 and 130 μg L−1, respectively. P. subcapitata cells, in the stationary phase of growth, displayed higher effective concentration values than those observed in the exponential phase. The 3- and 6-h EC50 values for Cu, for cells in the stationary phase, were 443 and 268 μgL−1, respectively. This short-term microplate assay showed to be a rapid endpoint for testing toxicity using the alga P. subcapitata. The small volume required, the simplicity of the assay (no washing steps), and the automatic reading of the fluorescence make the assay particularly well suited for the evaluation of the toxicity of a high number of environmental samples.
Resumo:
Competitive electricity markets have arisen as a result of power-sector restructuration and power-system deregulation. The players participating in competitive electricity markets must define strategies and make decisions using all the available information and business opportunities.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
The paper formulates a genetic algorithm that evolves two types of objects in a plane. The fitness function promotes a relationship between the objects that is optimal when some kind of interface between them occurs. Furthermore, the algorithm adopts an hexagonal tessellation of the two-dimensional space for promoting an efficient method of the neighbour modelling. The genetic algorithm produces special patterns with resemblances to those revealed in percolation phenomena or in the symbiosis found in lichens. Besides the analysis of the spacial layout, a modelling of the time evolution is performed by adopting a distance measure and the modelling in the Fourier domain in the perspective of fractional calculus. The results reveal a consistent, and easy to interpret, set of model parameters for distinct operating conditions.
Resumo:
To avoid additional hardware deployment, indoor localization systems have to be designed in such a way that they rely on existing infrastructure only. Besides the processing of measurements between nodes, localization procedure can include the information of all available environment information. In order to enhance the performance of Wi-Fi based localization systems, the innovative solution presented in this paper considers also the negative information. An indoor tracking method inspired by Kalman filtering is also proposed.
Resumo:
It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical approaches suggest the use of intermediate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints to assign intermediate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the deadline assignment problem while maximizing the aggregate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation.
Resumo:
Consider the problem of assigning real-time tasks on a heterogeneous multiprocessor platform comprising two different types of processors — such a platform is referred to as two-type platform. We present two linearithmic timecomplexity algorithms, SA and SA-P, each providing the follow- ing guarantee. For a given two-type platform and a given task set, if there exists a feasible task-to-processor-type assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type, then (i) using SA, it is guaranteed to find such a feasible task-to- processor-type assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding 2 a feasible task-to-processor assignment where tasks are not allowed to migrate between processors but given a platform in which processors are 1+α/times faster, where 0<α≤1. The parameter α is a property of the task set — it is the maximum utilization of any task which is less than or equal to 1.
Resumo:
This paper studies the optimization of complex-order algorithms for the discrete-time control of linear and nonlinear systems. The fundamentals of fractional systems and genetic algorithms are introduced. Based on these concepts, complexorder control schemes and their implementation are evaluated in the perspective of evolutionary optimization. The results demonstrate not only that complex-order derivatives constitute a valuable alternative for deriving control algorithms, but also the feasibility of the adopted optimization strategy.
Resumo:
One of the most well-known bio-inspired algorithms used in optimization problems is the particle swarm optimization (PSO), which basically consists on a machinelearning technique loosely inspired by birds flocking in search of food. More specifically, it consists of a number of particles that collectively move on the search space in search of the global optimum. The Darwinian particle swarm optimization (DPSO) is an evolutionary algorithm that extends the PSO using natural selection, or survival of the fittest, to enhance the ability to escape from local optima. This paper firstly presents a survey on PSO algorithms mainly focusing on the DPSO. Afterward, a method for controlling the convergence rate of the DPSO using fractional calculus (FC) concepts is proposed. The fractional-order optimization algorithm, denoted as FO-DPSO, is tested using several well-known functions, and the relationship between the fractional-order velocity and the convergence of the algorithm is observed. Moreover, experimental results show that the FO-DPSO significantly outperforms the previously presented FO-PSO.
Resumo:
In this paper we discuss challenges and design principles of an implementation of slot-based tasksplitting algorithms into the Linux 2.6.34 version. We show that this kernel version is provided with the required features for implementing such scheduling algorithms. We show that the real behavior of the scheduling algorithm is very close to the theoretical. We run and discuss experiments on 4-core and 24-core machines.
Resumo:
Most current-generation Wireless Sensor Network (WSN) nodes are equipped with multiple sensors of various types, and therefore support for multi-tasking and multiple concurrent applications is becoming increasingly common. This trend has been fostering the design of WSNs allowing several concurrent users to deploy applications with dissimilar requirements. In this paper, we extend the advantages of a holistic programming scheme by designing a novel compiler-assisted scheduling approach (called REIS) able to identify and eliminate redundancies across applications. To achieve this useful high-level optimization, we model each user application as a linear sequence of executable instructions. We show how well-known string-matching algorithms such as the Longest Common Subsequence (LCS) and the Shortest Common Super-sequence (SCS) can be used to produce an optimal merged monolithic sequence of the deployed applications that takes into account embedded scheduling information. We show that our approach can help in achieving about 60% average energy savings in processor usage compared to the normal execution of concurrent applications.
Resumo:
Multiprocessors, particularly in the form of multicores, are becoming standard building blocks for executing reliable software. But their use for applications with hard real-time requirements is non-trivial. Well-known realtime scheduling algorithms in the uniprocessor context (Rate-Monotonic [1] or Earliest-Deadline-First [1]) do not perform well on multiprocessors. For this reason the scientific community in the area of real-time systems has produced new algorithms specifically for multiprocessors. In the meanwhile, a proposal [2] exists for extending the Ada language with new basic constructs which can be used for implementing new algorithms for real-time scheduling; the family of task splitting algorithms is one of them which was emphasized in the proposal [2]. Consequently, assessing whether existing task splitting multiprocessor scheduling algorithms can be implemented with these constructs is paramount. In this paper we present a list of state-of-art task-splitting multiprocessor scheduling algorithms and, for each of them, we present detailed Ada code that uses the new constructs.
Resumo:
In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.
Resumo:
A MATLAB/SIMULINK-based simulator was employed for studies concerning the control of baker’s yeast fed-batch fermentation. Four control algorithms were implemented and compared: the classical PID control, two discrete versions- modified velocity and position algorithms, and a fuzzy law. The simulation package was seen to be an efficient tool for the simulation and tests of control strategies of the nonlinear process.
Resumo:
Optimization problems arise in science, engineering, economy, etc. and we need to find the best solutions for each reality. The methods used to solve these problems depend on several factors, including the amount and type of accessible information, the available algorithms for solving them, and, obviously, the intrinsic characteristics of the problem. There are many kinds of optimization problems and, consequently, many kinds of methods to solve them. When the involved functions are nonlinear and their derivatives are not known or are very difficult to calculate, these methods are more rare. These kinds of functions are frequently called black box functions. To solve such problems without constraints (unconstrained optimization), we can use direct search methods. These methods do not require any derivatives or approximations of them. But when the problem has constraints (nonlinear programming problems) and, additionally, the constraint functions are black box functions, it is much more difficult to find the most appropriate method. Penalty methods can then be used. They transform the original problem into a sequence of other problems, derived from the initial, all without constraints. Then this sequence of problems (without constraints) can be solved using the methods available for unconstrained optimization. In this chapter, we present a classification of some of the existing penalty methods and describe some of their assumptions and limitations. These methods allow the solving of optimization problems with continuous, discrete, and mixing constraints, without requiring continuity, differentiability, or convexity. Thus, penalty methods can be used as the first step in the resolution of constrained problems, by means of methods that typically are used by unconstrained problems. We also discuss a new class of penalty methods for nonlinear optimization, which adjust the penalty parameter dynamically.