66 resultados para E-learning, eServices, Web Searching, Quality Learning
Resumo:
In this paper, we foresee the use of Multi-Agent Systems for supporting dynamic and distributed scheduling in Manufacturing Systems. We also envisage the use of Autonomic properties in order to reduce the complexity of managing systems and human interference. By combining Multi-Agent Systems, Autonomic Computing, and Nature Inspired Techniques we propose an approach for the resolution of dynamic scheduling problem, with Case-based Reasoning Learning capabilities. The objective is to permit a system to be able to automatically adopt/select a Meta-heuristic and respective parameterization considering scheduling characteristics. From the comparison of the obtained results with previous results, we conclude about the benefits of its use.
Resumo:
This paper is about PCMAT, an adaptive learning platform for Mathematics in Basic Education schools. Based on a constructivist approach, PCMAT aims at verifying how techniques from adaptive hypermedia systems can improve e-learning based systems. To achieve this goal, PCMAT includes a Pedagogical Model that contains a set of adaptation rules that influence the student-platform interaction. PCMAT was subject to a preliminary testing with students aged between 12 and 14 years old on the subject of direct proportionality. The results from this preliminary test are quite promising as they seem to demonstrate the validity of our proposal.
Resumo:
The aim of this paper is to present an adaptation model for an Adaptive Educational Hypermedia System, PCMAT. The adaptation of the application is based on progressive self-assessment (exercises, tasks, and so on) and applies the constructivist learning theory and the learning styles theory. Our objective is the creation of a better, more adequate adaptation model that takes into account the complexities of different users.
Resumo:
Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.
Resumo:
As more and more digital resources are available, finding the appropriate document becomes harder. Thus, a new kind of tools, able to recommend the more appropriated resources according the user needs, becomes even more necessary. The current project implements an intelligent recommendation system for elearning platforms. The recommendations are based on one hand, the performance of the user during the training process and on the other hand, the requests made by the user in the form of search queries. All information necessary for decision-making process of recommendation will be represented in the user model. This model will be updated throughout the target user interaction with the platform.