79 resultados para Distribution power systems restoration
Resumo:
An intensive use of dispersed energy resources is expected for future power systems, including distributed generation, especially based on renewable sources, and electric vehicles. The system operation methods and tool must be adapted to the increased complexity, especially the optimal resource scheduling problem. Therefore, the use of metaheuristics is required to obtain good solutions in a reasonable amount of time. This paper proposes two new heuristics, called naive electric vehicles charge and discharge allocation and generation tournament based on cost, developed to obtain an initial solution to be used in the energy resource scheduling methodology based on simulated annealing previously developed by the authors. The case study considers two scenarios with 1000 and 2000 electric vehicles connected in a distribution network. The proposed heuristics are compared with a deterministic approach and presenting a very small error concerning the objective function with a low execution time for the scenario with 2000 vehicles.
Resumo:
Most of distributed generation and smart grid research works are dedicated to network operation parameters studies, reliability, etc. However, many of these works normally uses traditional test systems, for instance, IEEE test systems. This paper proposes voltage magnitude and reliability studies in presence of fault conditions, considering realistic conditions found in countries like Brazil. The methodology considers a hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models and a remedial action algorithm which is based on optimal power flow. To illustrate the application of the proposed method, the paper includes a case study that considers a real 12-bus sub-transmission network.
Resumo:
Energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and of massive electric vehicle is envisaged. The present paper proposes a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and Vehicle-to-Grid (V2G). This method considers that the energy resources are managed by a Virtual Power Player (VPP) which established contracts with their owners. It takes into account these contracts, the users' requirements subjected to the VPP, and several discharge price steps. The full AC power flow calculation included in the model takes into account network constraints. The influence of the successive day requirements on the day-ahead optimal solution is discussed and considered in the proposed model. A case study with a 33-bus distribution network and V2G is used to illustrate the good performance of the proposed method.
Resumo:
Catastrophic events, such as wars and terrorist attacks, big tornadoes and hurricanes, huge earthquakes, tsunamis, floods, and landslides, are always accompanied by a large number of casualties. The size distribution of these casualties have separately been shown to follow approximate power law (PL) distributions. In this paper, we analyze the number of victims of catastrophic phenomena, in particular, terrorism, and find double PL behavior. This means that the data set is better approximated by two PLs instead of one. We have plotted the two PL parameters corresponding to all terrorist events occurred in every year, from 1980 to 2010. We observe an interesting pattern in the chart, where the lines, that connect each pair of points defining the double PLs, are roughly aligned to each other.
Resumo:
A presente dissertação insere-se no âmbito da unidade curricular “ Dissertação” do 2º ano do mestrado em Engenharia Eletrotécnica – Sistemas Elétricos de Energia. Com o aumento crescente do número de consumidores de energia, é cada vez mais imperioso a adoção de medidas de racionalização e gestão dos consumos da energia elétrica. Existem diferentes tipos de dificuldades no planeamento e implementação de novas centrais produtoras de energia renovável, pelo que também por este motivo é cada vez mais importante adoção de medidas de gestão de consumos, quer ao nível dos clientes alimentados em média tensão como de baixa tensão. Desta forma será mais acessível a criação de padrões de eficiência energética elevados em toda a rede de distribuição de energia elétrica. Também a economia é afetada por uma fraca gestão dos consumos por parte dos clientes. Elevados desperdícios energéticos levam a que mais energia tenha que ser produzida, energia essa que contribui ainda mais para a elevada taxa de dependência energética em Portugal, e para o degradar da economia nacional. Coloca-se assim a necessidade de implementar planos e métodos que promovam a eficiência energética e a gestão racional de consumos de energia elétrica. Apresenta-se nesta dissertação várias propostas, algumas na forma de projetos já em execução, que visam sensibilizar o consumidor para a importância da utilização eficiente de energia e, ao mesmo tempo, disponibilizam as ferramentas tecnológicas adequadas para auxiliar a implementação dos métodos propostos. Embora os planos apresentados, sobejamente conhecidos, tenham imensa importância, a implementação nos vários consumidores de sistemas capazes de efetivamente reduzir consumos tem um papel fundamental. Equipamentos de gestão de consumos, que são apresentados nesta dissertação, permitem ao consumidor aceder diretamente ao seu consumo. Podem aceder não apenas ao consumo global da instalação mas também ao consumo específico por equipamento, permitindo perceber onde se verifica a situação mais desfavorável. Funcionalidades de programação de perfis tipo, com limitações de potência em vários períodos horários, bem como possibilidades de controlo remoto com recurso a aplicações para Smartphones permitem a redução de consumos ao nível da rede de distribuição e, desta forma, contribuir para a redução dos desperdícios e da dependência energética em Portugal. No âmbito do trabalho de dissertação é desenvolvida uma metodologia de comercialização de potência, que é apresentada nesta tese. Esta metodologia propõem que o consumidor, em função dos seus consumos, pague apenas a quantidade de potência que efetivamente necessita num certo período de tempo. Assim, o consumidor deixa de pagar uma tarifa mensal fixa associada á sua potência contratada, e passará a pagar um valor correspondente apenas à potência que efetivamente solicitou em todas as horas durante o mês. Nesta metodologia que é apresentada, o consumidor poderá também fazer uma análise do seu diagrama de cargas e simular uma alteração da sua tarifa, tarifa esta que varia entre tarifa simples, bi-horária semanal, bi-horária diária, tri-horária semanal ou tri-horária diária, de forma a perceber em qual destas pagará um menor valor pela mesma energia. De forma a que o consumidor possa perceber se haverá vantagem de uma alteração para uma potência contratada flexível, ou para uma outra tarifa associada á energia, tem ao seu dispor uma ferramenta, que em função dos seus consumos, permite retirar conclusões sobre o preço final a pagar na fatura, após cada tipo de alteração. Esta ferramenta foi validada com recurso a várias simulações, para diferentes perfis de consumidores. Desta forma, o utilizador fica a perceber que realmente pode poupar com uma potência contratada flexível, ao mesmo tempo que pode identificar-se com um perfil de simulação e, mais facilmente, perceber para que alteração tarifária pode usufruir de uma maior poupança.
Resumo:
The increasing number of players that operate in power systems leads to a more complex management. In this paper a new multi-agent platform is proposed, which simulates the real operation of power system players. MASGriP – A Multi-Agent Smart Grid Simulation Platform is presented. Several consumer and producer agents are implemented and simulated, considering real characteristics and different goals and actuation strategies. Aggregator entities, such as Virtual Power Players and Curtailment Service Providers are also included. The integration of MASGriP agents in MASCEM (Multi-Agent System for Competitive Electricity Markets) simulator allows the simulation of technical and economical activities of several players. An energy resources management architecture used in microgrids is also explained.
Resumo:
This paper proposes a particle swarm optimization (PSO) approach to support electricity producers for multiperiod optimal contract allocation. The producer risk preference is stated by a utility function (U) expressing the tradeoff between the expectation and variance of the return. Variance estimation and expected return are based on a forecasted scenario interval determined by a price range forecasting model developed by the authors. A certain confidence level is associated to each forecasted scenario interval. The proposed model makes use of contracts with physical (spot and forward) and financial (options) settlement. PSO performance was evaluated by comparing it with a genetic algorithm-based approach. This model can be used by producers in deregulated electricity markets but can easily be adapted to load serving entities and retailers. Moreover, it can easily be adapted to the use of other type of contracts.
Resumo:
Electricity Markets are not only a new reality but an evolving one as the involved players and rules change at a relatively high rate. Multi-agent simulation combined with Artificial Intelligence techniques may result in sophisticated tools very helpful under this context. Some simulation tools have already been developed, some of them very interesting. However, at the present state it is important to go a step forward in Electricity Markets simulators as this is crucial for facing changes in Power Systems. This paper explains the context and needs of electricity market simulation, describing the most important characteristics of available simulators. We present our work concerning MASCEM simulator, presenting its features as well as the improvements being made to accomplish the change and challenging reality of Electricity Markets.
Resumo:
Sustainable development concerns are being addressed with increasing attention, in general, and in the scope of power industry, in particular. The use of distributed generation (DG), mainly based on renewable sources, has been seen as an interesting approach to this problem. However, the increasing of DG in power systems raises some complex technical and economic issues. This paper presents ViProd, a simulation tool that allows modeling and simulating DG operation and participation in electricity markets. This paper mainly focuses on the operation of Virtual Power Producers (VPP) which are producers’ aggregations, being these producers mainly of DG type. The paper presents several reserve management strategies implemented in the scope of ViProd and the results of a case study, based on real data.
Resumo:
In recent years the use of several new resources in power systems, such as distributed generation, demand response and more recently electric vehicles, has significantly increased. Power systems aim at lowering operational costs, requiring an adequate energy resources management. In this context, load consumption management plays an important role, being necessary to use optimization strategies to adjust the consumption to the supply profile. These optimization strategies can be integrated in demand response programs. The control of the energy consumption of an intelligent house has the objective of optimizing the load consumption. This paper presents a genetic algorithm approach to manage the consumption of a residential house making use of a SCADA system developed by the authors. Consumption management is done reducing or curtailing loads to keep the power consumption in, or below, a specified energy consumption limit. This limit is determined according to the consumer strategy and taking into account the renewable based micro generation, energy price, supplier solicitations, and consumers’ preferences. The proposed approach is compared with a mixed integer non-linear approach.
Resumo:
The concept of demand response has a growing importance in the context of the future power systems. Demand response can be seen as a resource like distributed generation, storage, electric vehicles, etc. All these resources require the existence of an infrastructure able to give players the means to operate and use them in an efficient way. This infrastructure implements in practice the smart grid concept, and should accommodate a large number of diverse types of players in the context of a competitive business environment. In this paper, demand response is optimally scheduled jointly with other resources such as distributed generation units and the energy provided by the electricity market, minimizing the operation costs from the point of view of a virtual power player, who manages these resources and supplies the aggregated consumers. The optimal schedule is obtained using two approaches based on particle swarm optimization (with and without mutation) which are compared with a deterministic approach that is used as a reference methodology. A case study with two scenarios implemented in DemSi, a demand Response simulator developed by the authors, evidences the advantages of the use of the proposed particle swarm approaches.
Resumo:
Recent changes in power systems mainly due to the substantial increase of distributed generation and to the operation in competitive environments has created new challenges to operation and planning. In this context, Virtual Power Players (VPP) can aggregate a diversity of players, namely generators and consumers, and a diversity of energy resources, including electricity generation based on several technologies, storage and demand response. Demand response market implementation has been done in recent years. Several implementation models have been considered. An important characteristic of a demand response program is the trigger criterion. A program for which the event trigger depends on the Locational Marginal Price (LMP) used by the New England Independent System operator (ISO-NE) inspired the present paper. This paper proposes a methodology to support VPP demand response programs management. The proposed method has been computationally implemented and its application is illustrated using a 32 bus network with intensive use of distributed generation. Results concerning the evaluation of the impact of using demand response events are also presented.
Resumo:
This paper deals with the application of an intelligent tutoring approach to delivery training in diagnosis procedures of a Power System. In particular, the mechanisms implemented by the training tool to support the trainees are detailed. This tool is part of an architecture conceived to integrate Power Systems tools in a Power System Control Centre, based on an Ambient Intelligent paradigm. The present work is integrated in the CITOPSY project which main goal is to achieve a better integration between operators and control room applications, considering the needs of people, customizing requirements and forecasting behaviors.
Resumo:
In many countries the use of renewable energy is increasing due to the introduction of new energy and environmental policies. Thus, the focus on the efficient integration of renewable energy into electric power systems is becoming extremely important. Several European countries have already achieved high penetration of wind based electricity generation and are gradually evolving towards intensive use of this generation technology. The introduction of wind based generation in power systems poses new challenges for the power system operators. This is mainly due to the variability and uncertainty in weather conditions and, consequently, in the wind based generation. In order to deal with this uncertainty and to improve the power system efficiency, adequate wind forecasting tools must be used. This paper proposes a data-mining-based methodology for very short-term wind forecasting, which is suitable to deal with large real databases. The paper includes a case study based on a real database regarding the last three years of wind speed, and results for wind speed forecasting at 5 minutes intervals.
Resumo:
Currently, Power Systems (PS) already accommodate a substantial penetration of DG and operate in competitive environments. In the future PS will have to deal with largescale integration of DG and other distributed energy resources (DER), such as storage means, and provide to market agents the means to ensure a flexible and secure operation. This cannot be done with the traditional PS operation. SCADA (Supervisory Control and Data Acquisition) is a vital infrastructure for PS. Current SCADA adaptation to accommodate the new needs of future PS does not allow to address all the requirements. In this paper we present a new conceptual design of an intelligent SCADA, with a more decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). Once a situation is characterized, data and control options available to each entity are re-defined according to this context, taking into account operation normative and a priori established contracts. The paper includes a case-study of using future SCADA features to use DER to deal with incident situations, preventing blackouts.