90 resultados para Case-based reasoning
Resumo:
Future distribution systems will have to deal with an intensive penetration of distributed energy resources ensuring reliable and secure operation according to the smart grid paradigm. SCADA (Supervisory Control and Data Acquisition) is an essential infrastructure for this evolution. This paper proposes a new conceptual design of an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). This SCADA model is used to support the energy resource management undertaken by a distribution network operator (DNO). Resource management considers all the involved costs, power flows, and electricity prices, allowing the use of network reconfiguration and load curtailment. Locational Marginal Prices (LMP) are evaluated and used in specific situations to apply Demand Response (DR) programs on a global or a local basis. The paper includes a case study using a 114 bus distribution network and load demand based on real data.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.
Resumo:
In previous works we have proposed a hybrid wired/wireless PROFIBUS solution where the interconnection between the heterogeneous media was accomplished through bridge-like devices with wireless stations being able to move between different wireless cells. Additionally, we had also proposed a worst-case timing analysis assuming that stations were stationary. In this paper we advance these previous works by proposing a worst-case timing analysis for the system’s message streams considering the effect of inter-cell mobility.
Resumo:
Glass fibre-reinforced plastics (GFRP), nowadays commonly used in the construction, transportation and automobile sectors, have been considered inherently difficult to recycle due to both the cross-linked nature of thermoset resins, which cannot be remoulded, and the complex composition of the composite itself, which includes glass fibres, polymer matrix and different types of inorganic fillers. Hence, to date, most of the thermoset based GFRP waste is being incinerated or landfilled leading to negative environmental impacts and additional costs to producers and suppliers. With an increasing awareness of environmental matters and the subsequent desire to save resources, recycling would convert an expensive waste disposal into a profitable reusable material. In this study, the effect of the incorporation of mechanically recycled GFRP pultrusion wastes on flexural and compressive behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates (0%, 4%, 8% and 12%, w/w), with distinct size grades (coarse fibrous mixture and fine powdered mixture), were incorporated into polyester PM as sand aggregates and filler replacements. The effect of the incorporation of a silane coupling agent was also assessed. Experimental results revealed that GFRP waste filled polymer mortars show improved mechanical behaviour over unmodified polyester based mortars, thus indicating the feasibility of GFRP waste reuse as raw material in concrete-polymer composites.
Resumo:
The development of new products or processes involves the creation, re-creation and integration of conceptual models from the related scientific and technical domains. Particularly, in the context of collaborative networks of organisations (CNO) (e.g. a multi-partner, international project) such developments can be seriously hindered by conceptual misunderstandings and misalignments, resulting from participants with different backgrounds or organisational cultures, for example. The research described in this article addresses this problem by proposing a method and the tools to support the collaborative development of shared conceptualisations in the context of a collaborative network of organisations. The theoretical model is based on a socio-semantic perspective, while the method is inspired by the conceptual integration theory from the cognitive semantics field. The modelling environment is built upon a semantic wiki platform. The majority of the article is devoted to developing an informal ontology in the context of a European R&D project, studied using action research. The case study results validated the logical structure of the method and showed the utility of the method.
Resumo:
Advances in networking and information technologies are transforming factory-floor communication systems into a mainstream activity within industrial automation. It is now recognized that future industrial computer systems will be intimately tied to real-time computing and to communication technologies. For this vision to succeed, complex heterogeneous factory-floor communication networks (including mobile/wireless components) need to function in a predictable, flawless, efficient and interoperable way. In this paper we re-visit the issue of supporting real-time communications in hybrid wired/wireless fieldbus-based networks, bringing into it some experimental results obtained in the framework of the RFieldbus ISEP pilot.
Resumo:
Profibus networks are widely used as the communication infrastructure for supporting distributed computer-controlled applications. Most of the times, these applications impose strict real-time requirements. Profibus-DP has gradually become the preferred Profibus application profile. It is usually implemented as a mono-master Profibus network, and is optimised for speed and efficiency. The aim of this paper is to analyse the real-time behaviour of this class of Profibus networks. Importantly, we develop a new methodology for evaluating the worst-case message response time in systems where high-priority and cyclic low-priority Profibus traffic coexist. The proposed analysis constitutes a powerful tool to guarantee prior to runtime the real-time behaviour of a distributed computer-controlled system based on a Profibus network, where the realtime traffic is supported either by high-priority or by cyclic poll Profibus messages.
Resumo:
Fieldbus networks aim at the interconnection of field devices such as sensors, actuators and small controllers. Therefore, they are an effective technology upon which Distributed Computer Controlled Systems (DCCS) can be built. DCCS impose strict timeliness requirements to the communication network. In essence, by timeliness requirements we mean that traffic must be sent and received within a bounded interval, otherwise a timing fault is said to occur. P-NET is a multi-master fieldbus standard based on a virtual token passing scheme. In P-NET each master is allowed to transmit only one message per token visit, which means that in the worst-case the communication response time could be derived considering that the token is fully utilised by all stations. However, such analysis can be proved to be quite pessimistic. In this paper we propose a more sophisticated P-NET timing analysis model, which considers the actual token utilisation by different masters. The major contribution of this model is to provide a less pessimistic, and thus more accurate, analysis for the evaluation of the worst-case communication response time in P-NET fieldbus networks.
Resumo:
Absolute positioning – the real time satellite based positioning technique that relies solely on global navigation satellite systems – lacks accuracy for several real time application domains. To provide increased positioning quality, ground or satellite based augmentation systems can be devised, depending on the extent of the area to cover. The underlying technique – multiple reference station differential positioning – can, in the case of ground systems, be further enhanced through the implementation of the virtual reference station concept. Our approach is a ground based system made of a small-sized network of three stations where the concept of virtual reference station was implemented. The stations provide code pseudorange corrections, which are combined using a measurement domain approach inversely proportional to the distance from source station to rover. All data links are established trough the Internet.
Resumo:
Many-core platforms based on Network-on-Chip (NoC [Benini and De Micheli 2002]) present an emerging technology in the real-time embedded domain. Although the idea to group the applications previously executed on separated single-core devices, and accommodate them on an individual many-core chip offers various options for power savings, cost reductions and contributes to the overall system flexibility, its implementation is a non-trivial task. In this paper we address the issue of application mapping onto a NoCbased many-core platform when considering fundamentals and trends of current many-core operating systems, specifically, we elaborate on a limited migrative application model encompassing a message-passing paradigm as a communication primitive. As the main contribution, we formulate the problem of real-time application mapping, and propose a three-stage process to efficiently solve it. Through analysis it is assured that derived solutions guarantee the fulfilment of posed time constraints regarding worst-case communication latencies, and at the same time provide an environment to perform load balancing for e.g. thermal, energy, fault tolerance or performance reasons.We also propose several constraints regarding the topological structure of the application mapping, as well as the inter- and intra-application communication patterns, which efficiently solve the issues of pessimism and/or intractability when performing the analysis.
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
Resumo:
The usage of COTS-based multicores is becoming widespread in the field of embedded systems. Providing realtime guarantees at design-time is a pre-requisite to deploy real-time systems on these multicores. This necessitates the consideration of the impact of the contention due to shared low-level hardware resources on the Worst-Case Execution Time (WCET) of the tasks. As a step towards this aim, this paper first identifies the different factors that make the WCET analysis a challenging problem in a typical COTS-based multicore system. Then, we propose and prove, a mathematically correct method to determine tight upper bounds on the WCET of the tasks, when they are co-scheduled on different cores.
Resumo:
The current industry trend is towards using Commercially available Off-The-Shelf (COTS) based multicores for developing real time embedded systems, as opposed to the usage of custom-made hardware. In typical implementation of such COTS-based multicores, multiple cores access the main memory via a shared bus. This often leads to contention on this shared channel, which results in an increase of the response time of the tasks. Analyzing this increased response time, considering the contention on the shared bus, is challenging on COTS-based systems mainly because bus arbitration protocols are often undocumented and the exact instants at which the shared bus is accessed by tasks are not explicitly controlled by the operating system scheduler; they are instead a result of cache misses. This paper makes three contributions towards analyzing tasks scheduled on COTS-based multicores. Firstly, we describe a method to model the memory access patterns of a task. Secondly, we apply this model to analyze the worst case response time for a set of tasks. Although the required parameters to obtain the request profile can be obtained by static analysis, we provide an alternative method to experimentally obtain them by using performance monitoring counters (PMCs). We also compare our work against an existing approach and show that our approach outperforms it by providing tighter upper-bound on the number of bus requests generated by a task.
Resumo:
"Many-core” systems based on the Network-on- Chip (NoC) architecture have brought into the fore-front various opportunities and challenges for the deployment of real-time systems. Such real-time systems need timing guarantees to be fulfilled. Therefore, calculating upper-bounds on the end-to-end communication delay between system components is of primary interest. In this work, we identify the limitations of an existing approach proposed by [1] and propose different techniques to overcome these limitations.
Resumo:
In this paper, we intend to present some research carried out in a state Primary school, which is very well-equipped with ICT resources, including interactive whiteboards. The interactive whiteboard was used in the context of a Unit of Work for English learning, based on a traditional oral story, ‘Jack and the Beanstalk’. It was also used for reinforcing other topics like, ‘At the beach’, ‘In the city’, ‘Jobs’, etc. An analysis of the use of the digital board, which includes observation records as well as questionnaires for teachers and pupils, was carried out.