122 resultados para user data
Resumo:
This paper presents a methodology supported on the data base knowledge discovery process (KDD), in order to find out the failure probability of electrical equipments’, which belong to a real electrical high voltage network. Data Mining (DM) techniques are used to discover a set of outcome failure probability and, therefore, to extract knowledge concerning to the unavailability of the electrical equipments such us power transformers and high-voltages power lines. The framework includes several steps, following the analysis of the real data base, the pre-processing data, the application of DM algorithms, and finally, the interpretation of the discovered knowledge. To validate the proposed methodology, a case study which includes real databases is used. This data have a heavy uncertainty due to climate conditions for this reason it was used fuzzy logic to determine the set of the electrical components failure probabilities in order to reestablish the service. The results reflect an interesting potential of this approach and encourage further research on the topic.
Resumo:
Presently power system operation produces huge volumes of data that is still treated in a very limited way. Knowledge discovery and machine learning can make use of these data resulting in relevant knowledge with very positive impact. In the context of competitive electricity markets these data is of even higher value making clear the trend to make data mining techniques application in power systems more relevant. This paper presents two cases based on real data, showing the importance of the use of data mining for supporting demand response and for supporting player strategic behavior.
Resumo:
A methodology based on data mining techniques to support the analysis of zonal prices in real transmission networks is proposed in this paper. The mentioned methodology uses clustering algorithms to group the buses in typical classes that include a set of buses with similar LMP values. Two different clustering algorithms have been used to determine the LMP clusters: the two-step and K-means algorithms. In order to evaluate the quality of the partition as well as the best performance algorithm adequacy measurements indices are used. The paper includes a case study using a Locational Marginal Prices (LMP) data base from the California ISO (CAISO) in order to identify zonal prices.
Resumo:
Objectives : The purpose of this article is to find out differences between surveys using paper and online questionnaires. The author has deep knowledge in the case of questions concerning opinions in the development of survey based research, e.g. the limits of postal and online questionnaires. Methods : In the physician studies carried out in 1995 (doctors graduated in 1982-1991), 2000 (doctors graduated in 1982-1996), 2005 (doctors graduated in 1982-2001), 2011 (doctors graduated in 1977-2006) and 457 family doctors in 2000, were used paper and online questionnaires. The response rates were 64%, 68%, 64%, 49% and 73%, respectively. Results : The results of the physician studies showed that there were differences between methods. These differences were connected with using paper-based questionnaire and online questionnaire and response rate. The online-based survey gave a lower response rate than the postal survey. The major advantages of online survey were short response time; very low financial resource needs and data were directly loaded in the data analysis software, thus saved time and resources associated with the data entry process. Conclusions : The current article helps researchers with planning the study design and choosing of the right data collection method.
Resumo:
In the context of previous publications, we propose a new lightweight UM process, intended to work as a tourism recommender system in a commercial environment. The new process tackles issues like cold start, gray sheep and over specialization through a rich user model and the application of a gradual forgetting function to the collected user action history. Also, significant performance improvements were achieved regarding the previously proposed UM process.
Resumo:
The emergence of new business models, namely, the establishment of partnerships between organizations, the chance that companies have of adding existing data on the web, especially in the semantic web, to their information, led to the emphasis on some problems existing in databases, particularly related to data quality. Poor data can result in loss of competitiveness of the organizations holding these data, and may even lead to their disappearance, since many of their decision-making processes are based on these data. For this reason, data cleaning is essential. Current approaches to solve these problems are closely linked to database schemas and specific domains. In order that data cleaning can be used in different repositories, it is necessary for computer systems to understand these data, i.e., an associated semantic is needed. The solution presented in this paper includes the use of ontologies: (i) for the specification of data cleaning operations and, (ii) as a way of solving the semantic heterogeneity problems of data stored in different sources. With data cleaning operations defined at a conceptual level and existing mappings between domain ontologies and an ontology that results from a database, they may be instantiated and proposed to the expert/specialist to be executed over that database, thus enabling their interoperability.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Informática
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
A avaliação das organizações e a deterntinação da performance obtida pelo exercício da gestão, tem sido uma preocupação constante de gestores e accionistas, embora com objectivos diversos. Nos dias de hoje, a questão coloca-se com maior acuidade quer pela competitividade acrescida quer pela dimensão e complexidade actual das empresas. Pretendemos com este trabalho fazer uma descrição da metodologia DEA - Data Envelopment Analysis - nas suas formulações iniciais mais simples. A metodologia do DEA, pretende obter uma medida única e simples de avaliação da eficiência, combinando um conjunto de outputs e de inputs relativos às diferentes unidades homogéneas que se pretendem avaliar. O método DEA é um método não paramétrico que pelas suas características é particularmente adequado à avaliação de unidades homogéneas não necessariamente lucrativas. Concluímos, em geral, que são úteis e constituem um avanço importante, as informações obtidas através do DEA mas que outros métodos, designadamente rácios e análises de regressão, podem dar um contributo importante para complementar aquela análise.
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia.
Resumo:
Mestrado em Engenharia Informática. Área de Especialização em Tecnologias do Conhecimento e Decisão.