43 resultados para Student Response System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response.With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the predictive value of genetic polymorphisms in the context of BCG immunotherapy outcome and create a predictive profile that may allow discriminating the risk of recurrence. MATERIAL AND METHODS: In a dataset of 204 patients treated with BCG, we evaluate 42 genetic polymorphisms in 38 genes involved in the BCG mechanism of action, using Sequenom MassARRAY technology. Stepwise multivariate Cox Regression was used for data mining. RESULTS: In agreement with previous studies we observed that gender, age, tumor multiplicity and treatment scheme were associated with BCG failure. Using stepwise multivariate Cox Regression analysis we propose the first predictive profile of BCG immunotherapy outcome and a risk score based on polymorphisms in immune system molecules (SNPs in TNFA-1031T/C (rs1799964), IL2RA rs2104286 T/C, IL17A-197G/A (rs2275913), IL17RA-809A/G (rs4819554), IL18R1 rs3771171 T/C, ICAM1 K469E (rs5498), FASL-844T/C (rs763110) and TRAILR1-397T/G (rs79037040) in association with clinicopathological variables. This risk score allows the categorization of patients into risk groups: patients within the Low Risk group have a 90% chance of successful treatment, whereas patients in the High Risk group present 75% chance of recurrence after BCG treatment. CONCLUSION: We have established the first predictive score of BCG immunotherapy outcome combining clinicopathological characteristics and a panel of genetic polymorphisms. Further studies using an independent cohort are warranted. Moreover, the inclusion of other biomarkers may help to improve the proposed model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In competitive electricity markets it is necessary for a profit-seeking load-serving entity (LSE) to optimally adjust the financial incentives offering the end users that buy electricity at regulated rates to reduce the consumption during high market prices. The LSE in this model manages the demand response (DR) by offering financial incentives to retail customers, in order to maximize its expected profit and reduce the risk of market power experience. The stochastic formulation is implemented into a test system where a number of loads are supplied through LSEs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the deregulation experience of retail electricity markets in most countries, the majority of the new entrants of the liberalized retail market were pure REP (retail electricity providers). These entities were subject to financial risks because of the unexpected price variations, price spikes, volatile loads and the potential for market power exertion by GENCO (generation companies). A REP can manage the market risks by employing the DR (demand response) programs and using its' generation and storage assets at the distribution network to serve the customers. The proposed model suggests how a REP with light physical assets, such as DG (distributed generation) units and ESS (energy storage systems), can survive in a competitive retail market. The paper discusses the effective risk management strategies for the REPs to deal with the uncertainties of the DAM (day-ahead market) and how to hedge the financial losses in the market. A two-stage stochastic programming problem is formulated. It aims to establish the financial incentive-based DR programs and the optimal dispatch of the DG units and ESSs. The uncertainty of the forecasted day-ahead load demand and electricity price is also taken into account with a scenario-based approach. The principal advantage of this model for REPs is reducing the risk of financial losses in DAMs, and the main benefit for the whole system is market power mitigation by virtually increasing the price elasticity of demand and reducing the peak demand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of distribution networks in the current scenario of high penetration of Distributed Generation (DG) is a problem of great importance. In the competitive environment of electricity markets and smart grids, Demand Response (DR) is also gaining notable impact with several benefits for the whole system. The work presented in this paper comprises a methodology able to define the cost allocation in distribution networks considering large integration of DG and DR resources. The proposed methodology is divided into three phases and it is based on an AC Optimal Power Flow (OPF) including the determination of topological distribution factors, and consequent application of the MW-mile method. The application of the proposed tariffs definition methodology is illustrated in a distribution network with 33 buses, 66 DG units, and 32 consumers with DR capacity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The implementation of competitive electricity markets has changed the consumers’ and distributed generation position power systems operation. The use of distributed generation and the participation in demand response programs, namely in smart grids, bring several advantages for consumers, aggregators, and system operators. The present paper proposes a remuneration structure for aggregated distributed generation and demand response resources. A virtual power player aggregates all the resources. The resources are aggregated in a certain number of clusters, each one corresponding to a distinct tariff group, according to the economic impact of the resulting remuneration tariff. The determined tariffs are intended to be used for several months. The aggregator can define the periodicity of the tariffs definition. The case study in this paper includes 218 consumers, and 66 distributed generation units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The forthcoming smart grids are comprised of integrated microgrids operating in grid-connected and isolated mode with local generation, storage and demand response (DR) programs. The proposed model is based on three successive complementary steps for power transaction in the market environment. The first step is characterized as a microgrid’s internal market; the second concerns negotiations between distinct interconnected microgrids; and finally, the third refers to the actual electricity market. The proposed approach is modeled and tested using a MAS framework directed to the study of the smart grids environment, including the simulation of electricity markets. This is achieved through the integration of the proposed approach with the MASGriP (Multi-Agent Smart Grid Platform) system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular imprinting is a useful technique for the preparation of functional materials with molecular recognition properties. A Biomimetic Sensor Potentiometric System was developed for assessment of doxycycline (DOX) antibiotic. The molecularly imprinted polymer (MIP) was synthesized by using doxycycline as a template molecule, methacrylic acid (MAA) and/or acrylamide (AA) as a functional monomer and ethylene glycol dimethacrylat (EGDMA) as a cross-linking agent. The sensing elements were fabricated by the inclusion of DOX imprinted polymers in polyvinyl chloride (PVC) matrix. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors under static (batch) mode of operation reveals near-Nernstian response. MIP/MAA membrane sensor was incorporated in flow-through cells and used as detectors for flow injection analysis (FIA) of DOX. The method has the requisite accuracy, sensitivity and precision to assay DOX in tablets and biological fluids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decomposition of a fractional linear system is discussed in this paper. It is shown that it can be decomposed into an integer order part, corresponding to possible existing poles, and a fractional part. The first and second parts are responsible for the short and long memory behaviors of the system, respectively, known as characteristic of fractional systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3rd Workshop on High-performance and Real-time Embedded Systems (HIRES 2015). 21, Jan, 2015. Amsterdam, Netherlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demo presented in 12th Workshop on Models and Algorithms for Planning and Scheduling Problems (MAPSP 2015). 8 to 12, Jun, 2015. La Roche-en-Ardenne, Belgium. Extended abstract.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Further improvements in demand response programs implementation are needed in order to take full advantage of this resource, namely for the participation in energy and reserve market products, requiring adequate aggregation and remuneration of small size resources. The present paper focuses on SPIDER, a demand response simulation that has been improved in order to simulate demand response, including realistic power system simulation. For illustration of the simulator’s capabilities, the present paper is proposes a methodology focusing on the aggregation of consumers and generators, providing adequate tolls for the demand response program’s adoption by evolved players. The methodology proposed in the present paper focuses on a Virtual Power Player that manages and aggregates the available demand response and distributed generation resources in order to satisfy the required electrical energy demand and reserve. The aggregation of resources is addressed by the use of clustering algorithms, and operation costs for the VPP are minimized. The presented case study is based on a set of 32 consumers and 66 distributed generation units, running on 180 distinct operation scenarios.