54 resultados para Interval Dynamics
Resumo:
In this paper we study a delay mathematical model for the dynamics of HIV in HIV-specific CD4 + T helper cells. We modify the model presented by Roy and Wodarz in 2012, where the HIV dynamics is studied, considering a single CD4 + T cell population. Non-specific helper cells are included as alternative target cell population, to account for macrophages and dendritic cells. In this paper, we include two types of delay: (1) a latent period between the time target cells are contacted by the virus particles and the time the virions enter the cells and; (2) virus production period for new virions to be produced within and released from the infected cells. We compute the reproduction number of the model, R0, and the local stability of the disease free equilibrium and of the endemic equilibrium. We find that for values of R0<1, the model approaches asymptotically the disease free equilibrium. For values of R0>1, the model approximates asymptotically the endemic equilibrium. We observe numerically the phenomenon of backward bifurcation for values of R0⪅1. This statement will be proved in future work. We also vary the values of the latent period and the production period of infected cells and free virus. We conclude that increasing these values translates in a decrease of the reproduction number. Thus, a good strategy to control the HIV virus should focus on drugs to prolong the latent period and/or slow down the virus production. These results suggest that the model is mathematically and epidemiologically well-posed.
Resumo:
We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.
Resumo:
In this paper we study a model for HIV and TB coinfection. We consider the integer order and the fractional order versions of the model. Let α∈[0.78,1.0] be the order of the fractional derivative, then the integer order model is obtained for α=1.0. The model includes vertical transmission for HIV and treatment for both diseases. We compute the reproduction number of the integer order model and HIV and TB submodels, and the stability of the disease free equilibrium. We sketch the bifurcation diagrams of the integer order model, for variation of the average number of sexual partners per person and per unit time, and the tuberculosis transmission rate. We analyze numerical results of the fractional order model for different values of α, including α=1. The results show distinct types of transients, for variation of α. Moreover, we speculate, from observation of the numerical results, that the order of the fractional derivative may behave as a bifurcation parameter for the model. We conclude that the dynamics of the integer and the fractional order versions of the model are very rich and that together these versions may provide a better understanding of the dynamics of HIV and TB coinfection.
Resumo:
This paper reports on the analysis of tidal breathing patterns measured during noninvasive forced oscillation lung function tests in six individual groups. The three adult groups were healthy, with prediagnosed chronic obstructive pulmonary disease, and with prediagnosed kyphoscoliosis, respectively. The three children groups were healthy, with prediagnosed asthma, and with prediagnosed cystic fibrosis, respectively. The analysis is applied to the pressure-volume curves and the pseudophase-plane loop by means of the box-counting method, which gives a measure of the area within each loop. The objective was to verify if there exists a link between the area of the loops, power-law patterns, and alterations in the respiratory structure with disease. We obtained statistically significant variations between the data sets corresponding to the six groups of patients, showing also the existence of power-law patterns. Our findings support the idea that the respiratory system changes with disease in terms of airway geometry and tissue parameters, leading, in turn, to variations in the fractal dimension of the respiratory tree and its dynamics.
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
We derived a framework in integer programming, based on the properties of a linear ordering of the vertices in interval graphs, that acts as an edge completion model for obtaining interval graphs. This model can be applied to problems of sequencing cutting patterns, namely the minimization of open stacks problem (MOSP). By making small modifications in the objective function and using only some of the inequalities, the MOSP model is applied to another pattern sequencing problem that aims to minimize, not only the number of stacks, but also the order spread (the minimization of the stack occupation problem), and the model is tested.
Resumo:
The minimum interval graph completion problem consists of, given a graph G = ( V, E ), finding a supergraph H = ( V, E ∪ F ) that is an interval graph, while adding the least number of edges |F| . We present an integer programming formulation for solving the minimum interval graph completion problem recurring to a characteri- zation of interval graphs that produces a linear ordering of the maximal cliques of the solution graph.
Resumo:
In this paper we address an order processing optimization problem known as the Minimization of Open Stacks Problem (MOSP). This problem consists in finding the best sequence for manufacturing the different products required by costumers, in a setting where only one product can be made at a time. The objective is to minimize the maximum number of incomplete orders from costumers that are being processed simultaneously. We present an integer programming model, based on the existence of a perfect elimination order in interval graphs, which finds an optimal sequence for the costumers orders. Among other economic advantages, manufacturing the products in this optimal sequence reduces the amount of space needed to store incomplete orders.
Resumo:
The problem addressed here originates in the industry of flat glass cutting and wood panel sawing, where smaller items are cut from larger items accordingly to predefined cutting patterns. In this type of industry the smaller pieces that are cut from the patterns are piled around the machine in stacks according to the size of the pieces, which are moved to the warehouse only when all items of the same size have been cut. If the cutting machine can process only one pattern at a time, and the workspace is limited, it is desirable to set the sequence in which the cutting patterns are processed in a way to minimize the maximum number of open stacks around the machine. This problem is known in literature as the minimization of open stacks (MOSP). To find the best sequence of the cutting patterns, we propose an integer programming model, based on interval graphs, that searches for an appropriate edge completion of the given graph of the problem, while defining a suitable coloring of its vertices.
Resumo:
In this paper we address an order processing optimization problem known as minimization of open stacks (MOSP). We present an integer pro gramming model, based on the existence of a perfect elimination scheme in interval graphs, which finds an optimal sequence for the costumers orders.
Resumo:
We prove that the stable holonomies of a proper codimension 1 attractor Λ, for a Cr diffeomorphism f of a surface, are not C1+θ for θ greater than the Hausdorff dimension of the stable leaves of f intersected with Λ. To prove this result we show that there are no diffeomorphisms of surfaces, with a proper codimension 1 attractor, that are affine on a neighbourhood of the attractor and have affine stable holonomies on the attractor.
Resumo:
In today’s healthcare paradigm, optimal sedation during anesthesia plays an important role both in patient welfare and in the socio-economic context. For the closed-loop control of general anesthesia, two drugs have proven to have stable, rapid onset times: propofol and remifentanil. These drugs are related to their effect in the bispectral index, a measure of EEG signal. In this paper wavelet time–frequency analysis is used to extract useful information from the clinical signals, since they are time-varying and mark important changes in patient’s response to drug dose. Model based predictive control algorithms are employed to regulate the depth of sedation by manipulating these two drugs. The results of identification from real data and the simulation of the closed loop control performance suggest that the proposed approach can bring an improvement of 9% in overall robustness and may be suitable for clinical practice.
Resumo:
We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.
Resumo:
The local fractional Burgers’ equation (LFBE) is investigated from the point of view of local fractional conservation laws envisaging a nonlinear local fractional transport equation with a linear non-differentiable diffusion term. The local fractional derivative transformations and the LFBE conversion to a linear local fractional diffusion equation are analyzed.
Resumo:
Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.