25 resultados para persistent navigation and mapping
Resumo:
Teaching robotics to students at the beginning of their studies has become a huge challenge. Simulation environments can be an effective solution to that challenge where students can interact with simulated robots and have the first contact with robotic constraints. From our previous experience with simulation environments it was possible to observe that students with lower background knowledge in robotics where able to deal with a limited number of constraints, implement a simulated robotic platform and study several sensors. The question is: after this first phase what should be the best approach? Should the student start developing their own hardware? Hardware development is a very important part of an engineer's education but it can also be a difficult phase that could lead to discouragement and loss of motivation in some students. Considering the previous constraints and first year engineering students’ high abandonment rate it is important to develop teaching strategies to deal with this problem in a feasible way. The solution that we propose is the integration of a low-cost standard robotic platform WowWee Rovio as an intermediate solution between the simulation phase and the stage where the students can develop their own robots. This approach will allow the students to keep working in robotic areas such as: cooperative behaviour, perception, navigation and data fusion. The propose approach proved to be a motivation step not only for the students but also for the teachers. Students and teachers were able to reach an agreement between the level of demand imposed by the teachers and satisfaction/motivation of the students.
Resumo:
Robotica 2012: 12th International Conference on Autonomous Robot Systems and Competitions April 11, 2012, Guimarães, Portugal
Resumo:
O ensino à distância cresceu consideravelmente nos últimos anos e a tendência é para que continue a crescer em anos vindouros. No entanto, enquanto que a maioria das plataformas de ensino à distância utilizam a mesma abordagem de ensino para todos os utilizadores, os estudantes que as usam são na realidade pessoas de diferentes culturas, locais, idades e géneros, e que possuem diferentes níveis de educação. Ao contrário do ensino à distância tradicional, os sistemas de hipermédia adaptativa educacional adaptam interface, apresentação de conteúdos e navegação, entre outros, às características, necessidades e interesses específicos de diferentes utilizadores. Apesar da investigação na área de sistemas de hipermédia adaptativa já estar bastante desenvolvida, é necessário efetuar mais desenvolvimento e experimentação de modo a determinar quais são os aspetos mais eficazes destes sistemas e avaliar o seu sucesso. A Plataforma de Aprendizagem Colaborativa da Matemática (PCMAT) é um sistema de hipermédia adaptativa educacional com uma abordagem construtivista, que foi desenvolvido com o objetivo de contribuir para a investigação na área de sistemas de hipermédia adaptativa. A plataforma avalia o conhecimento do utilizador e apresenta conteúdos e atividades adaptadas às características e estilo de aprendizagem dominante de estudantes de matemática do segundo ciclo. O desenvolvimento do PCMAT tem também o propósito de auxiliar os alunos Portugueses com a aprendizagem da matemática. De acordo com o estudo PISA 2012 da OCDE [OECD, 2014], o desempenho dos alunos Portugueses na área da matemática melhorou em relação à edição anterior do estudo, mas os resultados obtidos permanecem abaixo da média da OCDE. Por este motivo, uma das finalidades deste projeto é desenvolver um sistema de hipermédia adaptativa que, ao adequar o ensino da matemática às necessidades específicas de cada aluno, os assista com a aquisição de conhecimento. A adaptação é efetuada pelo sistema usando a informação constante no modelo do utilizador para definir um grafo de conceitos do domínio específico. Este grafo é adaptado do modelo do domínio e utilizado para dar resposta às necessidades particulares de cada aluno. Embora a trajetória inicial seja definida pelo professor, o percurso percorrido no grafo por cada aluno é determinado pela sua interação com o sistema, usando para o efeito a representação do conhecimento do aluno e outras características disponíveis no modelo do utilizador, assim como avaliação progressiva. A adaptação é conseguida através de alterações na apresentação de conteúdos e na estrutura e anotações das hiperligações. A apresentação de conteúdos é alterada mostrando ou ocultando cada um dos vários fragmentos que compõe as páginas dum curso. Estes fragmentos são compostos por diferentes objetos de aprendizagem, tais como exercícios, figuras, diagramas, etc. As mudanças efetuadas na estrutura e anotações das hiperligações têm o objetivo de guiar o estudante, apontando-o na direção do conhecimento mais relevante e mantendo-o afastado de informação inadequada. A escolha de objectos de aprendizagem adequados às características particulares de cada aluno é um aspecto essencial do modelo de adaptação do PCMAT. A plataforma inclui para esse propósito um módulo responsável pela recomendação de objectos de aprendizagem, e um módulo para a pesquisa e recuperação dos mesmos. O módulo de recomendação utiliza lógica Fuzzy para converter determinados atributos do aluno num conjunto de parâmetros que caracterizam o objecto de aprendizagem que idealmente deveria ser apresentado ao aluno. Uma vez que o objecto “ideal” poderá não existir no repositório de objectos de aprendizagem do sistema, esses parâmetros são utilizados pelo módulo de pesquisa e recuperação para procurar e devolver ao módulo de recomendação uma lista com os objectos que mais se assemelham ao objecto “ideal”. A pesquisa é feita numa árvore k-d usando o algoritmo k-vizinhos mais próximos. O modelo de recomendação utiliza a lista devolvida pelo módulo de pesquisa e recuperação para seleccionar o objecto de aprendizagem mais apropriado para o aluno e processa-o para inclusão numa das páginas Web do curso. O presente documento descreve o trabalho desenvolvido no âmbito do projeto PCMAT (PTDS/CED/108339/2008), dando relevância à adaptação de conteúdos.
Resumo:
The temperature dependence of electrical conductivity and the photoconductivity of polycrystalline Cu2ZnSnS4 were investigated. It was found that at high temperatures the electrical conductivity was dominated by band conduction and nearest-neighbour hopping. However, at lower temperatures, both Mott variable-range hopping (VRH) and Efros–Shklovskii VRH were observed. The analysis of electrical transport showed high doping levels and a large compensation ratio, demonstrating large degree of disorder in Cu2ZnSnS4. Photoconductivity studies showed the presence of a persistent photoconductivity effect with decay time increasing with temperature, due to the presence of random local potential fluctuations in the Cu2ZnSnS4 thin film. These random local potential fluctuations cannot be attributed to grain boundaries but to the large disorder in Cu2ZnSnS4.
Resumo:
This paper presents the application of multidimensional scaling (MDS) analysis to data emerging from noninvasive lung function tests, namely the input respiratory impedance. The aim is to obtain a geometrical mapping of the diseases in a 3D space representation, allowing analysis of (dis)similarities between subjects within the same pathology groups, as well as between the various groups. The adult patient groups investigated were healthy, diagnosed chronic obstructive pulmonary disease (COPD) and diagnosed kyphoscoliosis, respectively. The children patient groups were healthy, asthma and cystic fibrosis. The results suggest that MDS can be successfully employed for mapping purposes of restrictive (kyphoscoliosis) and obstructive (COPD) pathologies. Hence, MDS tools can be further examined to define clear limits between pools of patients for clinical classification, and used as a training aid for medical traineeship.
Resumo:
Background: The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. Objectives: To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. Methods: AT samples (n=189) from obese patients (BMI ≥35) were collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. Results: Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (RS=0.310, p<0.01) and duration of obesity (RS=0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9±204.2 compared to 155.1±147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (RS=0.277, p<0.01), with relevance for vAT (RS=0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. Conclusion: Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to their metabolic effects and not only for their recognition as environmental obesogens.
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
A persistent photoconductivity effect (PPC) has been investigated in Cu2ZnSnS4 thin films and solar cells as a function of temperature. An anomalous increase of the PPC decay time with temperature was observed in all samples. The PPC decay time activation energy was found to increase when temperature rises above a crossover value, and also to grow with the increase of the sulfurization temperature and pressure. Both the anomalous behavior of the PPC decay time and the existence of two different activation energies are explained in terms of local potential fluctuations in the band edges of CZTS.
Resumo:
The present work aims to achieve and further develop a hydrogeomechanical approach in Caldas da Cavaca hydromineral system rock mass (Aguiar da Beira, NW Portugal), and contribute to a better understanding of the hydrogeological conceptual site model. A collection of several data, namely geology, hydrogeology, rock and soil geotechnics, borehole hydraulics and hydrogeomechanics, was retrieved from three rock slopes (Lagoa, Amores and Cancela). To accomplish a comprehensive analysis and rock engineering conceptualisation of the site, a multi‐technical approach were used, such as, field and laboratory techniques, hydrogeotechnical mapping, hydrogeomechanical zoning and hydrogeomechanical scheme classifications and indexes. In addition, a hydrogeomechanical data analysis and assessment, such as Hydro‐Potential (HP)‐Value technique, JW Joint Water Reduction index, Hydraulic Classification (HC) System were applied on rock slopes. The hydrogeomechanical zone HGMZ 1 of Lagoa slope achieved higher hydraulic conductivities with poorer rock mass quality results, followed by the hydrogeomechanical zone HGMZ 2 of Lagoa slope, with poor to fair rock mass quality and lower hydraulic parameters. In addition, Amores slope had a fair to good rock mass quality and the lowest hydraulic conductivity. The hydrogeomechanical zone HGMZ 3 of Lagoa slope, and the hydrogeomechanical zones HGMZ 1 and HGMZ 2 of Cancela slope had a fair to poor rock mass quality but were completely dry. Geographical Information Systems (GIS) mapping technologies was used in overall hydrogeological and hydrogeomechanical data integration in order to improve the hydrogeological conceptual site model.
Resumo:
Hard‐rock watersheds commonly exhibit complex geological bedrock and morphological features. Hydromineral resources have relevant economic value for the thermal spas industry. The present study aims to develop a groundwater vulnerability approach in Caldas da Cavaca hydromineral system (Aguiar da Beira, Central Portugal) which has a thermal tradition that dates back to the late 19th century, and contribute to a better understanding of the hydrogeological conceptual site model. In this work different layers were overlaid, generating several thematic maps to arrive at an integrated framework of several key‐sectors in Caldas da Cavaca site. Thus, to accomplish a comprehensive analysis and conceptualization of the site, a multi‐technical approach was used, such as, field and laboratory techniques, where several data was collected, like geotectonics, hydrology and hydrogeology, hydrogeomorphology, hydrogeophysical and hydrogeomechanical zoning aiming the application of the so‐called DISCO method. All these techniques were successfully performed and a groundwater vulnerability to contamination assessment, based on GOD‐S, DRASTIC‐Fm, SINTACS, SI and DISCO indexes methodology, was delineated. Geographical Information Systems (GIS) technology was on the basis to organise and integrate the geodatabases and to produce all the thematic maps. This multi‐technical approach highlights the importance of groundwater vulnerability to contamination mapping as a tool to support hydrogeological conceptualisation, contributing to better decision‐making of water resources management and sustainability.