20 resultados para obstacles
Resumo:
In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.
Resumo:
Trabalho de Projeto apresentado ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Internacionalização e Empreendedorismo, sob orientação da Professora Doutora Maria Clara Dias Pinto Ribeiro Esta versão não contém as críticas e sugestões dos elementos do júri.
Resumo:
Dissertação de Mestrado apresentada ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Tradução e Interpretação Especializadas, sob orientação do Doutor Manuel Moreira da Silva Esta versão não contém as críticas e sugestões dos elementos do júri
Resumo:
O veículo guiado automaticamente (AGV) adquirido pelo Departamento de Engenharia Mecânica (DEM) tem vindo a ficar obsoleto devido ao hardware, que nos dias de hoje começa a dar sinais de falhas bem como falta de peças de substituição, e ao software, sendo o PLC (Programmable Logic Controller) usado muito limitado quanto às suas funções de controlo, ficando as principais tarefas de controlo do AGV a cargo de placas eletrónicas de controlo. Para promover o controlo autónomo do AGV, foi decidido retirar toda a parte de hardware que detinha o controlo do mesmo e passou a ser um novo PLC, com maior capacidade de processamento, a executar todo o tipo de controlo necessário ao funcionamento do mesmo. O hardware considerado apenas incluí, de forma resumida, os motores responsáveis pelo movimento e direção, placa de controlo de potência dos motores, placa de interface entre as saídas digitais do PLC e as entradas da placa de controlo de potência dos motores e os demais sensores necessários à deteção de obstáculos, fins de curso da direção, sensores dos postos de trabalho e avisadores de emergência. Todo o controlo de movimento e direção bem como a seleção das ações a executar passou a ficar a cargo do software programado no PLC assim como a interação entre o sistema de supervisão instalado num posto de controlo e o PLC através de comunicação via rádio. O uso do PLC permitiu a flexibilidade de mudar facilmente a forma como as saídas digitais são usadas, ao contrário de um circuito eletrónico que necessita de uma completa remodelação, tempo de testes e implementação para efetuar a mesma função. O uso de um microcontrolador seria igualmente viável para a aplicação em causa, no entanto o uso do PLC tem a vantagem de ser robusto, mais rápido na velocidade de processamento, existência de software de interface de programação bastante intuitivo e de livre acesso, facilidade de alterar a programação localmente ou remotamente, via rádio, acesso a vários protocolos de comunicação robustos como Modbus, Canbus, Profinet, Modnet, etc., e acesso integrado de uma consola gráfica totalmente programável. iv É ainda possível a sua expansão com adição de módulos de entradas e saídas digitais e/ou analógicas permitindo expandir largamente o uso do AGV para outros fins. A solução está a ser amplamente testada e validada no Laboratório de Automação (LabA) do Departamento de Engenharia Mecânica do ISEP (Instituto Superior de Engenharia do Porto), permitindo a otimização dos sistemas de controlo de direção bem como a interatividade entre o PLC e o programa de interface/supervisão do posto de trabalho.
Resumo:
Os sistemas autónomos trazem como mais valia aos cenários de busca e salvamento a possibilidade de minimizar a presença de Humanos em situações de perigo e a capacidade de aceder a locais de difícil acesso. Na dissertação propõe-se endereçar novos métodos para perceção e navegação de veículos aéreos não tripulados (UAV), tendo como foco principal o planeamento de trajetórias e deteção de obstáculos. No que respeita à perceção foi desenvolvido um método para gerar clusters tendo por base os voxels gerados pelo Octomap. Na área de navegação, foram desenvolvidos dois novos métodos de planeamento de trajetórias, GPRM (Grid Probabilistic Roadmap) e PPRM (Particle Probabilistic Roadmap), que tem como método base para o seu desenvolvimento o PRM. O primeiro método desenvolvido, GPRM, espalha as partículas numa grid pré-definida, construindo posteriormente o roadmap na área determinada pela grid e com isto estima o trajeto mais curto até ao ponto destino. O segundo método desenvolvido, PPRM, espalha as partículas pelo cenário de aplicação, gera o roadmap considerando o mapa total e atribui uma probabilidade que irá permitir definir a trajetória otimizada. Para analisar a performance de cada método em comparação com o PRM, efetua-se a sua avaliação em três cenários distintos com recurso ao simulador MORSE.