26 resultados para lead in soils
Resumo:
Purpose Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds commonly found as soil contaminants. Fungal degradation is considered as an environmentally friendly and cost-effective approach to remove PAHs from soil. Acenaphthylene (Ace) and Benzo[a]anthracene (BaA) are two PAHs that can coexist in soils; however, the influence of the presence of each other on their biodegradation has not been studied. The biodegradation of Ace and BaA, alone and in mixtures, by the white rot fungus Pleurotus ostreatus was studied in a sandy soil. Materials and methods Experimental microcosms containing soil spiked with different concentrations of Ace and BaAwere inoculated with P. ostreatus. Initial (t 0) and final (after 15 days of incubation) soil concentrations of Ace and BaA were determined after extraction of the PAHs. Results and discussion P. ostreatus was able to degrade 57.7% of the Ace in soil spiked at 30 mg kg−1 dry soil and 65.8% of Ace in soil spiked at 60 mg kg−1 dry soil. The degradation efficiency of BaA by P. ostreatus was 86.7 and 77.4% in soil spiked with Ace at 30 and 60 mg kg−1 dry soil, respectively. After 15 days of incubation, there were no significant differences in Ace concentration between soil spiked with Ace and soil spiked with Ace + BaA, irrespective of the initial soil concentration of both PAHs. There were also no differences in BaA concentration between soil spiked with BaA and soil spiked with BaA + Ace. Conclusions The results indicate that the fungal degradation of Ace and BaA was not influenced by the presence of each other’s PAH in sandy soil. Bioremediation of soils contaminated with Ace and BaA using P. ostreatus is a promising approach to eliminate these PAHs from the environment.
Resumo:
Zero-valent iron nanoparticles (nZVIs) are often used in environmental remediation. Their high surface area that is associated with their high reactivity makes them an excellent agent capable of transforming/degrading contaminants in soils and waters. Due to the recent development of green methods for the production of nZVIs, the use of this material became even more attractive. However, the knowledge of its capacity to degrade distinct types of contaminants is still scarce. The present work describes the study of the application of green nZVIs to the remediation of soils contaminated with a common anti-inflammatory drug, ibuprofen. The main objectives of this work were to produce nZVIs using extracts of grape marc, black tea and vine leaves, to verify the degradation of ibuprofen in aqueous solutions by the nZVIs, to study the remediation process of a sandy soil contaminated with ibuprofen using the nZVIs, and to compare the experiments with other common chemical oxidants. The produced nZVIs had nanometric sizes and were able to degrade ibuprofen (54 to 66% of the initial amount) in aqueous solutions. Similar remediation efficiencies were obtained in sandy soils. In this case the remediation could be enhanced (achieving degradation efficiencies above 95%) through the complementation of the process with a catalyzed nZVI Fenton-like reaction. These results indicate that this remediation technology represents a good alternative to traditional and more aggressive technologies.
Resumo:
This paper aims to survey metal concentrations in soils in the vicinity of a coal-firedpower plant located in southwest of Portugal. Two annual sampling campaigns were carried out to measure a hypothetical soil contamination around the coal plant. The sampling area was divided into two subareas, both centered in the emission source, delimited by two concentric circles with radius of 6 km and 20 km. About 40 samplings points were defined in the influence area. Metals measurements were performed with a portable analytical X-ray dispersive energy fluorescence spectrometer identifying about 20 different elements in each sampling point. The most relevant elements measured included As, Cu, Fe, Hg, Pb, Ti and Zn in both sampling areas. Considering the results obtained in the first sampling campaign, arsenic is predominantly higher within the 6-20 km sampling area. The second sampling campaign showed that both sampling areas presented relatively similar metal concentrations except for Fe, Mn, Sr and Zn which concentration is higher within the 6-20 km sampling area. Also, As, Fe, Mn and Ti concentrations decreased significantly from the first to the second sampling campaign and their concentration were predominately higher in the NE-E and E-SE directions.
Resumo:
The need to increase agricultural yield led, among others, to an increase in the consumption of nitrogen based fertilizers. As a consequence, there are excessive concentrations of nitrates, the most abundant of the reactive nitrogen (Nr) species, in several areas of the world. The demographic changes and projected population growth for the next decades, and the economic shifts which are already shaping the near future are powerful drivers for a further intensification in the use of fertilizers, with a predicted increase of the nitrogen loads in soils. Nitrate easily diffuses in the subsurface environments, portraying high mobility in soils. Moreover, the presence of high nitrate loads in water has the potential to cause an array of health dysfunctions, such as methemoglobinemia and several cancers. Permeable Reactive Barriers (PRB) placed strategically relatively to the nitrate source constitute an effective technology to tackle nitrate pollution. Ergo, PRB avoid various adverse impacts resulting from the displacement of reactive nitrogen downstream along water bodies. A four stages literature review was carried out in 34 databases. Initially, a set of pertinent key words were identified to perform the initial databases searches. Then, the synonyms of those initial key words were used to carry out a second set of databases searches. The third stage comprised the identification of other additional relevant terms from the research papers identified in the previous two stages. Again, databases searches were performed with this third set of key words. The final step consisted of the identification of relevant papers from the bibliography of the relevant papers identified in the previous three stages of the literature review process. The set of papers identified as relevant for in-depth analysis were assessed considering a set of relevant characterization variables.
Resumo:
Mestrado em Engenharia Química. Ramo Tecnologias de Protecção Ambiental.
Resumo:
Prescribed fire is a common forest management tool used in Portugal to reduce the fuel load availability and minimize the occurrence of wildfires. In addition, the use of this technique also causes an impact to ecosystems. In this presentation we propose to illustrate some results of our project in two forest sites, both located in Northwest Portugal, where the effect of prescribed fire on soil properties were recorded during a period of 6 months. Changes in soil moisture, organic matter, soil pH and iron, were examined by Principal Component Analysis multivariate statistics technique in order to determine impact of prescribed fire on these soil properties in these two different types of soils and determine the period of time that these forest soils need to recover to their pre-fire conditions, if they can indeed recover. Although the time allocated to this study does not allow for a widespread conclusion, the data analysis clearly indicates that the pH values are positively correlated with iron values at both sites. In addition, geomorphologic differences between both sampling sites, Gramelas and Anjos, are relevant as the soils’ properties considered have shown different performances in time. The use of prescribed fire produced a lower impact in soils originated from more amended bedrock and therefore with a ticker humus covering (Gramelas) than in more rocky soils with less litter covering (Anjos) after six months after the prescribed fire occurrence.
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
Resumo:
Background Iron is vital for almost all living organisms by participating in a wide range of metabolic processes. However, iron concentration in body tissues must be tightly regulated since excessive iron may lead to microbial infections or cause tissue damage. Disorders of iron metabolism are among the most common human diseases and cover several conditions with varied clinical manifestations. Methods An extensive literature review on the basic aspects of iron metabolism was performed, and the most recent findings on this field were highlighted as well. Results New insights on iron metabolism have shed light into its real complexity, and its role in both healthy and pathological states has been recognized. Important discoveries about the iron regulatory machine and imbalances in its regulation have been made, which may lead in a near future to the development of new therapeutic strategies against iron disorders. Besides, the toxicity of free iron and its association with several pathologies has been addressed, although it requires further investigations. Conclusion This review will provide students in the fields of biochemistry and health sciences a brief and clear overview of iron physiology and toxicity, as well as imbalances in the iron homeostasis and associated pathological conditions.
Resumo:
A presença de metais pesados no meio ambiente deve-se, principalmente, a actividades antropogénicas. Ao contrário do Cu e do Zn, que em baixas concentrações são essenciais para o normal funcionamento celular, não se conhece para o chumbo nenhuma função biológica. O chumbo apresenta efeitos tóxicos, e considerado possível agente carcinogéneo, sendo classificado como poluente prioritário pela Agencia de Protecção Ambiental dos EUA (US-EPA). O presente trabalho teve como objetivo avaliar o papel da glutationa e do vacúolo, como mecanismos de defesa, contra os efeitos tóxicos induzidos pelo chumbo, usando como modelo a levedura Saccharomyces cerevisiae. A levedura S. cerevisiae quando exposta a varias concentrações de chumbo, durante 3h, perde a viabilidade e acumula espécies reativas de oxigénio (ROS). O estudo comparativo da perda de viabilidade e acumulação de ROS em células de uma estirpe selvagem (WT) e de estirpes mutantes, incapazes de produzir glutationa devido a uma deficiência no gene GSH1 (gsh1) ou GSH2 (gsh2) mostrou que as estirpes gsh1 ou(gsh2 não apresentavam um aumento da sensibilidade ao efeito toxico do chumbo. No entanto, o tratamento de células da estirpe WT com iodoacetamida (um agente alquilante que induz a depleção de glutationa) aumentou a sensibilidade das células a presença de chumbo. Pelo contrário, o enriquecimento em GSH, através da incubação de células WT com glucose e uma mistura de aminoácidos que constituem a GSH (acido L-glutâmico, L-cisteína e glicina), reduziu o stress oxidativo e a perda de viabilidade induzida por chumbo. A importância do vacúolo, como mecanismo de defesa, foi avaliada através da utilização de um mutante sem qualquer estrutura vacuolar (vps16) ou de mutantes deficientes na subunidade catalítica A (vma1) ou B (vma2) ou no proteolítico - subunidade C (vma3) da V-ATPase. As células da estirpe ƒ´vps16 apresentaram uma elevada suscetibilidade a presença de chumbo. As células das estirpes deficientes na subunidade A, B ou c da V-ATPase, apresentaram uma maior perda de viabilidade, quando expostas a chumbo, do que as células da estirpe WT, mas menor do que a da estirpe vps16 Em conclusão, os resultados obtidos, no seu conjunto, sugerem que a glutationa esta envolvida na defesa contra a toxicidade provocada por chumbo; todavia, a glutationa, por si só, parece não ser suficiente para suster o stress oxidativo e a perda de viabilidade induzida por chumbo. O vacúolo parece constituir um importante mecanismo de defesa contra a toxicidade provocada por chumbo. A V-ATPase parece estar envolvida na compartimentação de chumbo no vacúolo.
Resumo:
Sorption is commonly agreed to be the major process underlying the transport and fate of polycyclic aromatic hydrocarbons (PAHs) in soils. However, there is still a scarcity of studies focusing on spatial variability at the field scale in particular. In order to investigate the variation in the field of phenanthrene sorption, bulk topsoil samples were taken in a 15 × 15-m grid from the plough layer in two sandy loam fields with different texture and organic carbon (OC) contents (140 samples in total). Batch experiments were performed using the adsorption method. Values for the partition coefficient K d (L kg−1) and the organic carbon partition coefficient K OC (L kg−1) agreed with the most frequently used models for PAH partitioning, as OC revealed a higher affinity for sorption. More complex models using different OC compartments, such as non-complexed organic carbon (NCOC) and complexed organic carbon (COC) separately, performed better than single K OC models, particularly for a subset including samples with Dexter n < 10 and OC <0.04 kg kg−1. The selected threshold revealed that K OC-based models proved to be applicable for more organic fields, while two-component models proved to be more accurate for the prediction of K d and retardation factor (R) for less organic soils. Moreover, OC did not fully reflect the changes in phenanthrene retardation in the field with lower OC content (Faardrup). Bulk density and available water content influenced the phenanthrene transport mechanism phenomenon.
Resumo:
O presente trabalho pretende abordar aspectos relacionados com o controlo de compactação em aterros, com base na avaliação de parâmetros “in situ”, tais como: pesos volúmicos, teores em água, graus de compactação e módulos de deformabilidade. Recorrendo aos métodos correntes no controlo de compactação, como o ensaio de carga em placa, gamadensímetro, garrafa e ao ensaio de deflectómetro de impacto portátil. Visa-se comparar os resultados obtidos, nas diferentes condições, de modo a possibilitar alcançar correlações entre os ensaios, bem como determinar aqueles que apresentam maior grau de confiança técnico e vantagens operacionais e económicas. De modo a garantir os índices de qualidade da obra é necessário fazer cumprir os critérios exigidos pelo caderno de encargos, nomeadamente nos parâmetros de avaliação do controlo de compactação, para que estas satisfaçam o seu estado funcional e estrutural. Neste tipo de obras os cadernos de encargos de referência em Portugal são os das Estradas de Portigal (EP) e da Brisa, Auto-estradas de Portugal (Brisa), os quais se baseiam em recomendações de classificações de solos. No contexto experimental, foram efectuados dois estudos com condições e materiais diferentes, em obras pertencentes à empresa Mota-Engil Engenharia e Construções, S.A. Nas campanhas de ensaios foram realizados ensaios “in situ” na obra da Subconcessão do Douro Interior – Lote 6 – IC5 – Troço Murça/ Nó de Pombal nas camadas de sub-base e base num agregado de granulometria extensa, e na obra de modernização do troço ferroviário Bombel e Vidigal a Évora, em solos.