23 resultados para language transfer
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for the column design for any particular type of packing and contaminant avoiding the necessity of a pre-defined diameter used in the classical approach. It also renders unnecessary the employment of the graphical Eckert generalized correlation for pressure drop estimates. The hydraulic features are previously chosen as a project criterion and only afterwards the mass transfer phenomena are incorporated, in opposition to conventional approach. The design procedure was translated into a convenient algorithm using C++ as programming language. A column was built in order to test the models used either in the design or in the simulation of the column performance. The experiments were fulfilled using a solution of chloroform in distilled water. Another model was built to simulate the operational performance of the column, both in steady state and in transient conditions. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting system of ODE can be solved, allowing for the calculation of the concentration profile in both phases inside the column. In transient state the system of PDE was numerically solved by finite differences, after a previous linearization.
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.
Resumo:
Phonological development was assessed in six alphabetic orthographies (English, French, Greek, Icelandic, Portuguese and Spanish) at the beginning and end of the first year of reading instruction. The aim was to explore contrasting theoretical views regarding: the question of the availability of phonology at the outset of learning to read (Study 1); the influence of orthographic depth on the pace of phonological development during the transition to literacy (Study 2); and the impact of literacy instruction (Study 3). Results from 242 children did not reveal a consistent sequence of development as performance varied according to task demands and language. Phonics instruction appeared more influential than orthographic depth in the emergence of an early meta-phonological capacity to manipulate phonemes, and preliminary indications were that cross-linguistic variation was associated with speech rhythm more than factors such as syllable complexity. The implications of the outcome for current models of phonological development are discussed.
Resumo:
Societal changes have, throughout history, pushed the long-established boundaries of education across all grade levels. Technology and media merge with education in a continuous complex social process with human consequences and effects. We, teachers, can aspire to understand and interpret this volatile context that is being redesigned at the same time society itself is being reshaped as a result of the technological evolution. The language- learning classroom is not impenetrable to these transformations. Rather, it can perhaps be seen as a playground where teachers and students gather to combine the past and the present in an integrated approach. We draw on the results from a previous study and argue that Digital Storytelling as a Process is capable of aggregating and fostering positive student development in general, as well as enhancing interpersonal relationships and self-knowledge while improving digital literacy. Additionally, we establish a link between the four basic language-learning skills and the Digital Storytelling process and demonstrate how these converge into what can be labeled as an integrated language learning approach.
Resumo:
Poster presented in The 28th GI/ITG International Conference on Architecture of Computing Systems (ARCS 2015). 24 to 26, Mar, 2015. Porto, Portugal.
Resumo:
Intelligent wheelchairs (IW) are technologies that can increase the autonomy and independence of elderly people and patients suffering from some kind of disability. Nowadays the intelligent wheelchairs and the human-machine studies are very active research areas. This paper presents a methodology and a Data Analysis System (DAS) that provides an adapted command language to an user of the IW. This command language is a set of input sequences that can be created using inputs from an input device or a combination of the inputs available in a multimodal interface. The results show that there are statistical evidences to affirm that the mean of the evaluation of the DAS generated command language is higher than the mean of the evaluation of the command language recommended by the health specialist (p value = 0.002) with a sample of 11 cerebral palsy users. This work demonstrates that it is possible to adapt an intelligent wheelchair interface to the user even when the users present heterogeneous and severe physical constraints.
Resumo:
High-content analysis has revolutionized cancer drug discovery by identifying substances that alter the phenotype of a cell, which prevents tumor growth and metastasis. The high-resolution biofluorescence images from assays allow precise quantitative measures enabling the distinction of small molecules of a host cell from a tumor. In this work, we are particularly interested in the application of deep neural networks (DNNs), a cutting-edge machine learning method, to the classification of compounds in chemical mechanisms of action (MOAs). Compound classification has been performed using image-based profiling methods sometimes combined with feature reduction methods such as principal component analysis or factor analysis. In this article, we map the input features of each cell to a particular MOA class without using any treatment-level profiles or feature reduction methods. To the best of our knowledge, this is the first application of DNN in this domain, leveraging single-cell information. Furthermore, we use deep transfer learning (DTL) to alleviate the intensive and computational demanding effort of searching the huge parameter's space of a DNN. Results show that using this approach, we obtain a 30% speedup and a 2% accuracy improvement.