39 resultados para correction methods
Resumo:
A square-wave voltammetric (SWV) method and a flow injection analysis system with amperometric detection were developed for the determination of tramadol hydrochloride. The SWV method enables the determination of tramadol over the concentration range of 15-75 µM with a detection limit of 2.2 µM. Tramadol could be determined in concentrations between 9 and 50 µM at a sampling rate of 90 h-1, with a detection limit of 1.7 µM using the flow injection system. The electrochemical methods developed were successfully applied to the determination of tramadol in pharmaceutical dosage forms, without any pre-treatment of the samples. Recovery trials were performed to assess the accuracy of the results; the values were between 97 and 102% for both methods.
Resumo:
In order to combat a variety of pests, pesticides are widely used in fruits. Several extraction procedures (liquid extraction, single drop microextraction, microwave-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, solid-phase extraction, solid-phase microextraction, matrix solid-phase dispersion, and stir bar sorptive extraction) have been reported to determine pesticide residues in fruits and fruit juices. The significant change in recent years is the introduction of the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) methods in these matrices analysis. A combination of techniques reported the use of new extraction methods and chromatography to provide better quantitative recoveries at low levels. The use of mass spectrometric detectors in combination with liquid and gas chromatography has played a vital role to solve many problems related to food safety. The main attention in this review is on the achievements that have been possible because of the progress in extraction methods and the latest advances and novelties in mass spectrometry, and how these progresses have influenced the best control of food, allowing for an increase in the food safety and quality standards.
Resumo:
The state of the art of voltammetric and amperometric methods used in the study and determination of pesticides in crops, food, phytopharmaceutical products, and environmental samples is reviewed. The main structural groups of pesticides, i.e., triazines, organophosphates, organochlorides, nitrocompounds, carbamates, thiocarbamates, sulfonylureas, and bipyridinium compounds are considered with some degradation products. The advantages, drawbacks, and trends in the development of voltammetric and amperometric methods for study and determination of pesticides in these samples are discussed.
Resumo:
This paper focuses on evaluating the usability of an Intelligent Wheelchair (IW) in both real and simulated environments. The wheelchair is controlled at a high-level by a flexible multimodal interface, using voice commands, facial expressions, head movements and joystick as its main inputs. A Quasi-experimental design was applied including a deterministic sample with a questionnaire that enabled to apply the System Usability Scale. The subjects were divided in two independent samples: 46 individuals performing the experiment with an Intelligent Wheelchair in a simulated environment (28 using different commands in a sequential way and 18 with the liberty to choose the command); 12 individuals performing the experiment with a real IW. The main conclusion achieved by this study is that the usability of the Intelligent Wheelchair in a real environment is higher than in the simulated environment. However there were not statistical evidences to affirm that there are differences between the real and simulated wheelchairs in terms of safety and control. Also, most of users considered the multimodal way of driving the wheelchair very practical and satisfactory. Thus, it may be concluded that the multimodal interfaces enables very easy and safe control of the IW both in simulated and real environments.
Resumo:
We perform a comparison between the fractional iteration and decomposition methods applied to the wave equation on Cantor set. The operators are taken in the local sense. The results illustrate the significant features of the two methods which are both very effective and straightforward for solving the differential equations with local fractional derivative.
Resumo:
Optimization problems arise in science, engineering, economy, etc. and we need to find the best solutions for each reality. The methods used to solve these problems depend on several factors, including the amount and type of accessible information, the available algorithms for solving them, and, obviously, the intrinsic characteristics of the problem. There are many kinds of optimization problems and, consequently, many kinds of methods to solve them. When the involved functions are nonlinear and their derivatives are not known or are very difficult to calculate, these methods are more rare. These kinds of functions are frequently called black box functions. To solve such problems without constraints (unconstrained optimization), we can use direct search methods. These methods do not require any derivatives or approximations of them. But when the problem has constraints (nonlinear programming problems) and, additionally, the constraint functions are black box functions, it is much more difficult to find the most appropriate method. Penalty methods can then be used. They transform the original problem into a sequence of other problems, derived from the initial, all without constraints. Then this sequence of problems (without constraints) can be solved using the methods available for unconstrained optimization. In this chapter, we present a classification of some of the existing penalty methods and describe some of their assumptions and limitations. These methods allow the solving of optimization problems with continuous, discrete, and mixing constraints, without requiring continuity, differentiability, or convexity. Thus, penalty methods can be used as the first step in the resolution of constrained problems, by means of methods that typically are used by unconstrained problems. We also discuss a new class of penalty methods for nonlinear optimization, which adjust the penalty parameter dynamically.
Resumo:
The characteristics of carbon fibre reinforced laminates had widened their use, from aerospace to domestic appliances. A common characteristic is the need of drilling for assembly purposes. It is known that a drilling process that reduces the drill thrust force can decrease the risk of delamination. In this work, delamination assessment methods based on radiographic data are compared and correlated with mechanical test results (bearing test).
Resumo:
Constrained and unconstrained Nonlinear Optimization Problems often appear in many engineering areas. In some of these cases it is not possible to use derivative based optimization methods because the objective function is not known or it is too complex or the objective function is non-smooth. In these cases derivative based methods cannot be used and Direct Search Methods might be the most suitable optimization methods. An Application Programming Interface (API) including some of these methods was implemented using Java Technology. This API can be accessed either by applications running in the same computer where it is installed or, it can be remotely accessed through a LAN or the Internet, using webservices. From the engineering point of view, the information needed from the API is the solution for the provided problem. On the other hand, from the optimization methods researchers’ point of view, not only the solution for the problem is needed. Also additional information about the iterative process is useful, such as: the number of iterations; the value of the solution at each iteration; the stopping criteria, etc. In this paper are presented the features added to the API to allow users to access to the iterative process data.
Resumo:
In Nonlinear Optimization Penalty and Barrier Methods are normally used to solve Constrained Problems. There are several Penalty/Barrier Methods and they are used in several areas from Engineering to Economy, through Biology, Chemistry, Physics among others. In these areas it often appears Optimization Problems in which the involved functions (objective and constraints) are non-smooth and/or their derivatives are not know. In this work some Penalty/Barrier functions are tested and compared, using in the internal process, Derivative-free, namely Direct Search, methods. This work is a part of a bigger project involving the development of an Application Programming Interface, that implements several Optimization Methods, to be used in applications that need to solve constrained and/or unconstrained Nonlinear Optimization Problems. Besides the use of it in applied mathematics research it is also to be used in engineering software packages.
Resumo:
On-chip debug (OCD) features are frequently available in modern microprocessors. Their contribution to shorten the time-to-market justifies the industry investment in this area, where a number of competing or complementary proposals are available or under development, e.g. NEXUS, CJTAG, IJTAG. The controllability and observability features provided by OCD infrastructures provide a valuable toolbox that can be used well beyond the debugging arena, improving the return on investment rate by diluting its cost across a wider spectrum of application areas. This paper discusses the use of OCD features for validating fault tolerant architectures, and in particular the efficiency of various fault injection methods provided by enhanced OCD infrastructures. The reference data for our comparative study was captured on a workbench comprising the 32-bit Freescale MPC-565 microprocessor, an iSYSTEM IC3000 debugger (iTracePro version) and the Winidea 2005 debugging package. All enhanced OCD infrastructures were implemented in VHDL and the results were obtained by simulation within the same fault injection environment. The focus of this paper is on the comparative analysis of the experimental results obtained for various OCD configurations and debugging scenarios.
Resumo:
Introdução: O CPAP nasal é o tratamento de eleição para os pacientes com Síndrome da Apneia Obstrutiva do Sono (SAOS). Com a máscara nasal podem ocorrer fugas de ar pela boca, que podem por em causa a aderência do paciente ao tratamento devido muitas vezes ao desconforto que provocam, ao aumento do trabalho respiratório e por afectarem a qualidade do sono. Objectivos: Este estudo tem como principal objectivo verificar a eficácia da banda submentoniana e da máscara facial na correcção das fugas pela boca em pacientes com SAOS. Métodos e Participantes: Uma amostra de conveniência de 15 pacientes (8 homens) com SAOS e a fazerem CPAP com máscara nasal, foi recrutada. Foram divididos em dois grupos A e B, onde no grupo A se colocou a banda submentoniana e no grupo B se alterou a interface para máscara facial. Medidas e Resultados: As variáveis avaliadas neste estudo foram as fugas, o IAH, o percentil 95 da pressão de tratamento, a Sa,O2 e os efeitos adversos das duas intervenções. O nível de fugas reduziu no grupo A de 38±11,27 para 24,55±14,30L/min (p=0,002) e no grupo B de 34,34±16,50 para 18,51±16,22L/min (p=0,008). O IAH aumentou no grupo B de 2,60±2,13 para 4,41±3,88 (p=0,016). Relativamente ao percentil 95 da pressão de tratamento aumentou nos dois grupos (Grupo A de 10,15±2,63 para 12,08±2,45cmH2O (p=0,008) e no Grupo B 10,51±1,88 para 12,64±1,29cmH2O (p=0,008)). A Sa,O2 mínima aumentou e o tempo<90% diminui no grupo A com p=0,008, p=0,031, respectivamente. Quanto ao uso auto-reportado verificaram-se poucos efeitos adversos, salientando-se apenas a facilidade de colocação da banda submentoniana, a secura da boca nos dois grupos, a pressão no queixo provocada pela banda e a dor no dorso do nariz provocada pela máscara facial. Conclusão: Ambas as estratégias provaram ser mais eficazes a reduzir a fuga que a máscara nasal. Foram bem toleradas e com poucos efeitos adversos.
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.
Resumo:
The development of an intelligent wheelchair (IW) platform that may be easily adapted to any commercial electric powered wheelchair and aid any person with special mobility needs is the main objective of this project. To be able to achieve this main objective, three distinct control methods were implemented in the IW: manual, shared and automatic. Several algorithms were developed for each of these control methods. This paper presents three of the most significant of those algorithms with emphasis on the shared control method. Experiments were performed by users suffering from cerebral palsy, using a realistic simulator, in order to validate the approach. The experiments revealed the importance of using shared (aided) controls for users with severe disabilities. The patients still felt having complete control over the wheelchair movement when using a shared control at a 50% level and thus this control type was very well accepted. Thus it may be used in intelligent wheelchairs since it is able to correct the direction in case of involuntary movements of the user but still gives him a sense of complete control over the IW movement.
Resumo:
Forest fires dynamics is often characterized by the absence of a characteristic length-scale, long range correlations in space and time, and long memory, which are features also associated with fractional order systems. In this paper a public domain forest fires catalogue, containing information of events for Portugal, covering the period from 1980 up to 2012, is tackled. The events are modelled as time series of Dirac impulses with amplitude proportional to the burnt area. The time series are viewed as the system output and are interpreted as a manifestation of the system dynamics. In the first phase we use the pseudo phase plane (PPP) technique to describe forest fires dynamics. In the second phase we use multidimensional scaling (MDS) visualization tools. The PPP allows the representation of forest fires dynamics in two-dimensional space, by taking time series representative of the phenomena. The MDS approach generates maps where objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to better understand forest fires behaviour.