49 resultados para TRABECULAR SHEAR-STRESS
Resumo:
In this study, an experimental investigation into the shear strength behaviour of aluminium alloy single-lap adhesive joints was carried out in order to understand the effect of temperature on the strength of adhesively bonding joints. Single lap joints (SLJs) were fabricated and tested at RT and high temperatures (100ºC, 125ºC, 150ºC, 175ºC and 200ºC). Results showed that the failure loads of the single-lap joint test specimens vary with temperature and this needs to be considered in any design procedure. It is shown that, although the tensile stress decreased with temperature, the lap-shear strength of the adhesive increased with increasing of temperature up to the glass transition of the adhesive (Tg) and decreased for tests above the Tg.
Resumo:
Adhesive joints are largely employed nowadays as a fast and effective joining process. The respective techniques for strength prediction have also improved over the years. Cohesive Zone Models (CZM’s) coupled to Finite Element Method (FEM) analyses surpass the limitations of stress and fracture criteria and allow modelling damage. CZM’s require the energy release rates in tension (Gn) and shear (Gs) and respective fracture energies in tension (Gnc) and shear (Gsc). Additionally, the cohesive strengths (tn0 for tension and ts0 for shear) must also be defined. In this work, the influence of the CZM parameters of a triangular CZM used to model a thin adhesive layer is studied, to estimate their effect on the predictions. Some conclusions were drawn for the accuracy of the simulation results by variations of each one of these parameters.
Resumo:
Interest in polyethylene and polypropylene bonding has increased in the last years. However, adhesive joints with adherends which are of low surface energy and which are chemically inert present several difficulties. Generally, their high degree of chemical resistance to solvents and dissimilar solubility parameters limit the usefulness of solvent bonding as a viable assembly technique. One successful approach to adhesive bonding of these materials involves proper selection of surface pre-treatment prior to bonding. With the correct pre-treatment it is possible to glue these materials with one or more of several adhesives required by the applications involved. A second approach is the use of adhesives without surface pre-treatment, such as hot melts, high tack pressure-sensitive adhesives, solvent-based specialty adhesives and, more recently, structural acrylic adhesives as such 3M DP-8005® and Loctite 3030®. In this paper, the shear strengths of two acrylic adhesives were evaluated using the lap shear test method ASTM D3163 and the block shear test method ASTM D4501. Two different industrial polyolefins (polyethylene and polypropylene) were used for adherends. However, the focus of this study was to measure the shear strength of polyethylene joints with acrylic adhesives. The effect of abrasion was also studied. Some test specimens were manually abraded using 180 and 320 grade abrasive paper. An additional goal of this work was to examine the effect of temperature and moisture on mechanical strength of adhesive joints.
Resumo:
In this work, a repair technique with adhesively bonded carbon-epoxy patches is proposed for wood members damaged by horizontal shear and under bending loads. This damage is characterized by horizontal crack growth near the neutral plane of the wood beam, normally originating from checks and shakes. The repair consists of adhesively bonded carbon-epoxy patches on the vertical side faces of the beam at the cracked region to block sliding between the beam arms. An experimental and numerical parametric analysis was performed on the patch length. The numerical analysis used the finite element method (FEM) and cohesive zone models (CZMs), with an inverse modelling technique for the characterization of the adhesive layer. Trapezoidal cohesive laws in each pure mode were used to account for the ductility of the adhesive used. To fully reproduce the tests, horizontal damage propagation within the wood beam was also simulated. A good correlation with the experiments was found. Regarding the effectiveness of the repair, for the conditions selected for this work, a full strength recovery was achieved for the bigger value of patch length tested.
Resumo:
In this work, the shear modulus and strength of the acrylic adhesive 3M® DP 8005 was evaluated by two different methods: the Thick Adherend Shear Test (TAST) and the Notched Plate Shear Method (Arcan). However, TAST standards advise the use of a special extensometer attached to the specimen, which requires a very experienced technician. In the present study, the adhesive shear displacement for the TAST was measured using an optical technique, and also with a conventional inductive extensometer of 25 mm used for tensile tests. This allowed for an assessment of suitability of using a conventional extensometer to measure this parameter. Since the results obtained by the two techniques are identical, it can be concluded that using a conventional extensometer is a valid option to obtain the shear modulus for the particular adhesive used. In the Arcan tests, the adhesive shear displacement was only measured using the optical technique. This work also aimed the comparison of shear modulus and strength obtained by the TAST and Arcan test methods.
Resumo:
Bonded unions are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional fastening, riveting, bolting and welding techniques. Between the available bonding configurations, the single-lap joint is the most commonly used and studied by the scientific community due to its simplicity, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes in single-lap joints is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses at the damage initiation sites in structures or alterations of the failure mechanism emerging from local modifications. In this work, the effect of hole drilling at the overlap on the strength of single-lap joints was analyzed experimentally with two main purposes: (1) to check whether or not the anchorage effect of the adhesive within the holes is more preponderant than the stress concentrations near the holes, arising from the sharp edges, and modification of the joints straining behaviour (strength improvement or reduction, respectively) and (2) picturing a real scenario on which the components to be bonded are modified by some external factor (e.g. retrofitting of decaying/old-fashioned fastened unions). Tests were made with two adhesives (a brittle and a ductile one) varying the adherend thickness and the number, layout and diameter of the holes. Experimental testing showed that the joints strength never increases from the un-modified condition, showing a varying degree of weakening, depending on the selected adhesive and hole drilling configuration.
Resumo:
An experimental and numerical investigation into the shear strength behaviour of adhesive single lap joints (SLJs) was carried out in order to understand the effect of temperature on the joint strength. The adherend material used for the experimental tests was an aluminium alloy in the form of thin sheets, and the adhesive used was a high-strength high temperature epoxy. Tensile tests as a function of temperature were performed and numerical predictions based on the use of a bilinear cohesive damage model were obtained. It is shown that at temperatures below Tg, the lap shear strength of SLJs increased, while at temperatures above Tg, a drastic drop in the lap shear strength was observed. Comparison between the experimental and numerical maximum loads representing the strength of the joints shows a reasonably good agreement.
Resumo:
The most common techniques for stress analysis/strength prediction of adhesive joints involve analytical or numerical methods such as the Finite Element Method (FEM). However, the Boundary Element Method (BEM) is an alternative numerical technique that has been successfully applied for the solution of a wide variety of engineering problems. This work evaluates the applicability of the boundary elem ent code BEASY as a design tool to analyze adhesive joints. The linearity of peak shear and peel stresses with the applied displacement is studied and compared between BEASY and the analytical model of Frostig et al., considering a bonded single-lap joint under tensile loading. The BEM results are also compared with FEM in terms of stress distributions. To evaluate the mesh convergence of BEASY, the influence of the mesh refinement on peak shear and peel stress distributions is assessed. Joint stress predictions are carried out numerically in BEASY and ABAQUS®, and analytically by the models of Volkersen, Goland, and Reissner and Frostig et al. The failure loads for each model are compared with experimental results. The preparation, processing, and mesh creation times are compared for all models. BEASY results presented a good agreement with the conventional methods.
Resumo:
An integrated chemical-biological effects monitoring was performed in 2010 and 2012 in two NW Iberian estuaries under different anthropogenic pressure. One is low impacted and the other is contaminated by metals. The aim was to verify the usefulness of a multibiomarker approach, using Carcinus maenas as bioindicator species, to reflect diminishing environmental contamination and improved health status under abiotic variation. Sampling sites were assessed for metal levels in sediments and C. maenas, water abiotic factors and biomarkers (neurotoxicity, energy metabolism, biotransformation, anti-oxidant defences, oxidative damage). High inter-annual and seasonal abiotic variation was observed. Metal levels in sediments and crab tissues were markedly higher in 2010 than in 2012 in the contaminated estuary. Biomarkers indicated differences between the study sites and seasons and an improvement of effects measured in C. maenas from the polluted estuary in 2012. Integrated Biomarker Response (IBR) index depicted sites with higher stress levels whereas Principal Component Analysis (PCA) showed associations between biomarker responses and environmental variables. The multibiomarker approach and integrated assessments proved to be useful to the early diagnosis of remediation measures in impacted sites.
Resumo:
The impact of metals (Cd, Cr, Cu and Zn) on growth, cell volume and cell division of the freshwateralga Pseudokirchneriella subcapitata exposed over a period of 72 h was investigated. The algal cells wereexposed to three nominal concentrations of each metal: low (closed to 72 h-EC10values), intermediate(closed to 72 h-EC50values) and high (upper than 72 h-EC90values). The exposure to low metal concen-trations resulted in a decrease of cell volume. On the contrary, for the highest metal concentrations anincrease of cell volume was observed; this effect was particularly notorious for Cd and less pronouncedfor Zn. Two behaviours were found when algal cells were exposed to intermediate concentrations ofmetals: Cu(II) and Cr(VI) induced a reduction of cell volume, while Cd(II) and Zn(II) provoked an oppositeeffect. The simultaneous nucleus staining and cell image analysis, allowed distinguishing three phases inP. subcapitata cell cycle: growth of mother cell; cell division, which includes two divisions of the nucleus;and, release of four autospores. The exposure of P. subcapitata cells to the highest metal concentrationsresulted in the arrest of cell growth before the first nucleus division [for Cr(VI) and Cu(II)] or after thesecond nucleus division but before the cytokinesis (release of autospores) when exposed to Cd(II). Thedifferent impact of metals on algal cell volume and cell-cycle progression, suggests that different toxic-ity mechanisms underlie the action of different metals studied. The simultaneous nucleus staining andcell image analysis, used in the present work, can be a useful tool in the analysis of the toxicity of thepollutants, in P. subcapitata, and help in the elucidation of their different modes of action.
Resumo:
The yeast Saccharomyces cerevisiae is a useful model organism for studying lead (Pb) toxicity. Yeast cells of a laboratory S. cerevisiae strain (WT strain) were incubated with Pb concentrations up to 1,000 μmol/l for 3 h. Cells exposed to Pb lost proliferation capacity without damage to the cell membrane, and they accumulated intracellular superoxide anion (O2 .−) and hydrogen peroxide (H2O2). The involvement of the mitochondrial electron transport chain (ETC) in the generation of reactive oxygen species (ROS) induced by Pb was evaluated. For this purpose, an isogenic derivative ρ0 strain, lacking mitochondrial DNA, was used. The ρ0 strain, without respiratory competence, displayed a lower intracellular ROS accumulation and a higher resistance to Pb compared to the WT strain. The kinetic study of ROS generation in yeast cells exposed to Pb showed that the production of O2 .− precedes the accumulation of H2O2, which is compatible with the leakage of electrons from the mitochondrial ETC. Yeast cells exposed to Pb displayed mutations at the mitochondrial DNA level. This is most likely a consequence of oxidative stress. In conclusion, mitochondria are an important source of Pb-induced ROS and, simultaneously, one of the targets of its toxicity.
Resumo:
MOOC (as an acronym for Massive Open Online Courses) are a quite new model for the delivery of online learning to students. As “Massive” and “Online”, these courses are proposed to be accessible to many more learners than would be possible through conventional teaching. As “Open” they are (frequently) free of charge and participation is not limited by the geographical situation of the learners, creating new learning opportunities in Higher Education Institutions (HEI). In this paper we describe a recently started project “Matemática 100 STRESS” (Math Without STRESS) integrated in the e-IPP project | e-Learning Unit of Porto’s Polytechnic Institute (IPP) which has created its own MOOC platform and launched its first course – Probabilities and Combinatorics – in early June/2014. In this MOOC development were involved several lecturers from four of the seven IPP schools.
Resumo:
The single-lap joint is the most commonly used, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses or alterations of the failure mechanism emerging from local modifications. In this work, the effect of using different thickness adherends on the tensile strength of single-lap joints, bonded with a ductile and brittle adhesive, was numerically and experimentally evaluated. The joints were tested under tension for different combinations of adherend thickness. The effect of the adherends thickness mismatch on the stress distributions was also investigated by Finite Elements (FE), which explained the experimental results and the strength prediction of the joints. The numerical study was made by FE and Cohesive Zone Modelling (CZM), which allowed characterizing the entire fracture process. For this purpose, a FE analysis was performed in ABAQUS® considering geometric non-linearities. In the end, a detailed comparative evaluation of unbalanced joints, commonly used in engineering applications, is presented to give an understanding on how modifications in the bonded structures thickness can influence the joint performance.
Resumo:
Mestrado em Engenharia Mecânica
Resumo:
Introdução: Estudos anteriores em modelos tumorais de glioma e melanoma, tumores radiorresistentes, indicaram que a obesidade pode estar relacionada com um aumento do status oxidativo e com a diminuição da resistência à radiação. Como a Radioterapia é o tratamento frequentemente utilizado para esta patologia, propomo-nos, desta forma, a explorar a influência da obesidade em células de glioma, as BC3H1, e melanoma, B16F10, submetidas a Radioterapia, na presença de agentes oxidantes e antioxidantes, para o estudo da sua influência ao nível da viabilidade celular e do impacto do stress oxidativo. Métodos: As células BC3H1 e B16F10 foram tratadas com t-BOOH (150μM e 50 μM, respetivamente), TUDCA (25μM e 1μM, respetivamente) e com a mistura de t-BOOH+TUDCA em meio DMEM sem soro e meio condicionado (CM), a partir de adipócitos 3T3-L1. Em seguida, parte das células foram irradiadas com uma dose total de 2Gy. Posteriormente avaliou-se a viabilidade celular (teste MTT) e o stress oxidativo (teste TBARS, atividade da catalase, concentração da GSH, e status antioxidante total), às 4h e 12h. Resultados: Observou-se um aumento da capacidade antioxidante total das células irradiadas, comparativamente com as células não irradiadas. O meio condicionado reduziu o stress oxidativo nas BC3H1, ao mesmo tempo que reduziu a sua viabilidade celular. O TUDCA nas células incubadas com MC e submetidas a radioterapia, tendencialmente diminuiu a viabilidade celular, nas concertações em estudo. Discussão/Conclusão: O meio condicionado e a radioterapia, por si só, aumentam a resposta antioxidante total na célula, às 4h e às 12h. O TUDCA nas células incubadas com meio condicionado e submetidas a radioterapia, teve um comportamento citotóxico para as BC3H1, nas concentrações testadas. Revelando a necessidade de aprofundar os estudos da ação deste composto como agente radiossensibilizador, neste e noutros modelos celulares de carcinogénese.