69 resultados para Riemann-Liouville and Caputo Fractional Derivatives
Resumo:
The shifted Legendre orthogonal polynomials are used for the numerical solution of a new formulation for the multi-dimensional fractional optimal control problem (M-DFOCP) with a quadratic performance index. The fractional derivatives are described in the Caputo sense. The Lagrange multiplier method for the constrained extremum and the operational matrix of fractional integrals are used together with the help of the properties of the shifted Legendre orthonormal polynomials. The method reduces the M-DFOCP to a simpler problem that consists of solving a system of algebraic equations. For confirming the efficiency and accuracy of the proposed scheme, some test problems are implemented with their approximate solutions.
Resumo:
This study addresses the optimization of fractional algorithms for the discrete-time control of linear and non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of systems.
Resumo:
When a pesticide is released into the environment, most of it is lost before it reaches its target. An effective way to reduce environmental losses of pesticides is by using controlled release technology. Microencapsulation becomes a promising technique for the production of controlled release agricultural formulations. In this work, the microencapsulation of chlorophenoxy herbicide MCPA with native b-cyclodextrin and its methyl and hydroxypropyl derivatives was investigated. The phase solubility study showed that both native and b-CD derivatives increased the water solubility of the herbicide and inclusion complexes are formed in a stoichiometric ratio of 1:1. The stability constants describing the extent of formation of the complexes have been determined by phase solubility studies. 1H NMR experiments were also accomplished for the prepared solid systems and the data gathered confirm the formation of the inclusion complexes. 1H NMR data obtained for the MCPA/CDs complexes disclosed noticeable proton shift displacements for OCH2 group and H6 aromatic proton of MCPA provided clear evidence of inclusion complexation process, suggesting that the phenyl moiety of the herbicide was included in the hydrophobic cavity of CDs. Free energy molecular mechanics calculations confirm all these findings. The gathered results can be regarded as an essential step to the development of controlled release agricultural formulations containing herbicide MCPA.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
This paper explores the calculation of fractional integrals by means of the time delay operator. The study starts by reviewing the memory properties of fractional operators and their relationship with time delay. Based on the time response of the Mittag-Leffler function an approximation of fractional integrals consisting of time delayed samples is proposed. The tuning of the approximation is optimized by means of a genetic algorithm. The results demonstrate the feasibility of the new perspective and the limits of their application.
Resumo:
This paper studies the dynamical properties of systems with backlash and impact phenomena. This type of non-linearity can be tackled in the perspective of the fractional calculus theory. Fractional and integer order models are compared and their influence upon the emerging dynamics is analysed. It is demonstrated that fractional models can memorize dynamical effects due to multiple micro-collisions.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
This paper studies the statistical distributions of worldwide earthquakes from year 1963 up to year 2012. A Cartesian grid, dividing Earth into geographic regions, is considered. Entropy and the Jensen–Shannon divergence are used to analyze and compare real-world data. Hierarchical clustering and multi-dimensional scaling techniques are adopted for data visualization. Entropy-based indices have the advantage of leading to a single parameter expressing the relationships between the seismic data. Classical and generalized (fractional) entropy and Jensen–Shannon divergence are tested. The generalized measures lead to a clear identification of patterns embedded in the data and contribute to better understand earthquake distributions.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores. Área de Especialização de Automação e Sistemas.
Resumo:
We study the observability of linear and nonlinear fractional differential systems of order 0 < α < 1 by using the Mittag-Leffler matrix function and the application of Banach’s contraction mapping theorem. Several examples illustrate the concepts.
Resumo:
Fractional calculus (FC) is currently being applied in many areas of science and technology. In fact, this mathematical concept helps the researches to have a deeper insight about several phenomena that integer order models overlook. Genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. This methodology applies the concepts that describe biological evolution to obtain optimal solution in many different applications. In this line of thought, in this work we use the FC and the GA concepts to implement the electrical fractional order potential. The performance of the GA scheme, and the convergence of the resulting approximation, are analyzed. The results are analyzed for different number of charges and several fractional orders.
Resumo:
In this paper we study a model for HIV and TB coinfection. We consider the integer order and the fractional order versions of the model. Let α∈[0.78,1.0] be the order of the fractional derivative, then the integer order model is obtained for α=1.0. The model includes vertical transmission for HIV and treatment for both diseases. We compute the reproduction number of the integer order model and HIV and TB submodels, and the stability of the disease free equilibrium. We sketch the bifurcation diagrams of the integer order model, for variation of the average number of sexual partners per person and per unit time, and the tuberculosis transmission rate. We analyze numerical results of the fractional order model for different values of α, including α=1. The results show distinct types of transients, for variation of α. Moreover, we speculate, from observation of the numerical results, that the order of the fractional derivative may behave as a bifurcation parameter for the model. We conclude that the dynamics of the integer and the fractional order versions of the model are very rich and that together these versions may provide a better understanding of the dynamics of HIV and TB coinfection.
Resumo:
O projeto realizado teve como tema a aplicação das derivadas e integrais fraccionários para a implementação de filtros digitais numa perspetiva de processamento digital de sinais. Numa primeira fase do trabalho, é efetuado uma abordagem teórica sobre os filtros digitais e o cálculo fraccionário. Estes conceitos teóricos são utilizados posteriormente para o desenvolvimento do presente projeto. Numa segunda fase, é desenvolvida uma interface gráfica em ambiente MatLab, utilizando a ferramenta GUIDE. Esta interface gráfica tem como objetivo a implementação de filtros digitais fraccionários. Na terceira fase deste projeto são implementados os filtros desenvolvidos experimentalmente através do ADSP-2181, onde será possível analisar e comparar os resultados experimentais com os resultados obtidos por simulação no MatLab. Como quarta e última fase deste projeto é efetuado uma reflexão sobre todo o desenvolvimento da Tese e o que esta me proporcionou. Com este relatório pretendo apresentar todo o esforço aplicado na realização deste trabalho, bem como alguns dos conhecimentos adquiridos ao longo do curso.
Resumo:
The decomposition of a fractional linear system is discussed in this paper. It is shown that it can be decomposed into an integer order part, corresponding to possible existing poles, and a fractional part. The first and second parts are responsible for the short and long memory behaviors of the system, respectively, known as characteristic of fractional systems.
Resumo:
Inspired in dynamic systems theory and Brewer’s contributions to apply it to economics, this paper establishes a bond graph model. Two main variables, a set of inter-connectivities based on nodes and links (bonds) and a fractional order dynamical perspective, prove to be a good macro-economic representation of countries’ potential performance in nowadays globalization. The estimations based on time series for 50 countries throughout the last 50 decades confirm the accuracy of the model and the importance of scale for economic performance.