29 resultados para Peer-to-Peer networks


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Massive Open Online Courses (MOOC) are gaining prominence in transversal teaching-learning strategies. However, there are many issues still debated, namely assessment, recognized largely as a cornerstone in Education. The large number of students involved requires a redefinition of strategies that often use approaches based on tasks or challenging projects. In these conditions and due to this approach, assessment is made through peer-reviewed assignments and quizzes online. The peer-reviewed assignments are often based upon sample answers or topics, which guide the student in the task of evaluating peers. This chapter analyzes the grading and evaluation in MOOCs, especially in science and engineering courses, within the context of education and grading methodologies and discusses possible perspectives to pursue grading quality in massive e-learning courses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we address the real-time capabilities of P-NET, which is a multi-master fieldbus standard based on a virtual token passing scheme. We show how P-NETâs medium access control (MAC) protocol is able to guarantee a bounded access time to message requests. We then propose a model for implementing fixed prioritybased dispatching mechanisms at each masterâs application level. In this way, we diminish the impact of the first-come-first-served (FCFS) policy that P-NET uses at the data link layer. The proposed model rises several issues well known within the real-time systems community: message release jitter; pre-run-time schedulability analysis in non pre-emptive contexts; non-independence of tasks at the application level. We identify these issues in the proposed model and show how results available for priority-based task dispatching can be adapted to encompass priority-based message dispatching in P-NET networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we address the ability of WorldFIP to cope with the real-time requirements of distributed computer-controlled systems (DCCS). Typical DCCS include process variables that must be transferred between network devices both in a periodic and sporadic (aperiodic) basis. The WorldFIP protocol is designed to support both types of traffic. WorldFIP can easily guarantee the timing requirements for the periodic traffic. However, for the aperiodic traffic more complex analysis must be made in order to guarantee its timing requirements. This paper describes work that is being carried out to extend previous relevant work, in order to include the actual schedule for the periodic traffic in the worst-case response time analysis of sporadic traffic in WorldFIP networks

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The integration of wired and wireless technologies in modern manufacturing plants is now of paramount importance for the competitiveness of any industry. Being PROFIBUS the most widely used technology in use for industrial communications, several solutions have been proposed to provide PROFIBUS networks with wireless communications. One of them, the bridge-based hybrid wired/wireless PROFIBUS network approach, proposes an architecture in which the Intermediate Systems operate at Data Link Layer level, as bridges. In this paper, we propose an architecture for the implementation of such a bridge and the required protocols to handle communication between stations in different domains and the mobility of wireless stations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Consider a wireless sensor network (WSN) where a broadcast from a sensor node does not reach all sensor nodes in the network; such networks are often called multihop networks. Sensor nodes take sensor readings but individual sensor readings are not very important. It is important however to compute aggregated quantities of these sensor readings. The minimum and maximum of all sensor readings at an instant are often interesting because they indicate abnormal behavior, for example if the maximum temperature is very high then it may be that a fire has broken out. We propose an algorithm for computing the min or max of sensor reading in a multihop network. This algorithm has the particularly interesting property of having a time complexity that does not depend on the number of sensor nodes; only the network diameter and the range of the value domain of sensor readings matter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The advantages of networking are widely known in many areas (from business to personal ones). One particular area where networks have also proved their benefits is education. Taking the secondary school education level into account, some successful cases can be found in literature. In this paper we describe a particular remote lab network supporting physical experiments accessible to students of institutions geographically separated. The network architecture and application examples of using some of the available remote experiments are illustrated in detail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Marketing Digital, sob orientação do Mestre Paulo Gonçalves e da Doutora Madalena Vilas Boas Esta versão não contém as críticas e sugestões dos elementos do júri

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper proposes a methodology to increase the probability of delivering power to any load point through the identification of new investments. The methodology uses a fuzzy set approach to model the uncertainty of outage parameters, load and generation. A DC fuzzy multicriteria optimization model considering the Pareto front and based on mixed integer non-linear optimization programming is developed in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power to all customers in the distribution network at the minimum possible cost for the system operator, while minimizing the non supplied energy cost. To illustrate the application of the proposed methodology, the paper includes a case study which considers an 33 bus distribution network.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

IEEE International Conference on Pervasive Computing and Communications (PerCom). 23 to 26, Mar, 2015, PhD Forum. Saint Louis, U.S.A..

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study proposes a new methodology to increase the power delivered to any load point in a radial distribution network, through the identification of new investments in order to improve the repair time. This research work is innovative and consists in proposing a full optimisation model based on mixed-integer non-linear programming considering the Pareto front technique. The goal is to achieve a reduction in repair times of the distribution networks components, while minimising the costs of that reduction as well as non-supplied energy costs. The optimisation model considers the distribution network technical constraints, the substation transformer taps, and it is able to choose the capacitor banks size. A case study based on a 33-bus distribution network is presented in order to illustrate in detail the application of the proposed methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10âˆ2 to 10âˆ4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the last two decades, small strain shear modulus became one of the most important geotechnical parameters to characterize soil stiffness. Finite element analysis have shown that in-situ stiffness of soils and rocks is much higher than what was previously thought and that stress-strain behaviour of these materials is non-linear in most cases with small strain levels, especially in the ground around retaining walls, foundations and tunnels, typically in the order of 10âˆ2 to 10âˆ4 of strain. Although the best approach to estimate shear modulus seems to be based in measuring seismic wave velocities, deriving the parameter through correlations with in-situ tests is usually considered very useful for design practice.The use of Neural Networks for modeling systems has been widespread, in particular within areas where the great amount of available data and the complexity of the systems keeps the problem very unfriendly to treat following traditional data analysis methodologies. In this work, the use of Neural Networks and Support Vector Regression is proposed to estimate small strain shear modulus for sedimentary soils from the basic or intermediate parameters derived from Marchetti Dilatometer Test. The results are discussed and compared with some of the most common available methodologies for this evaluation.