34 resultados para Open Mapping
Mapeamento da Responsabilidade Social em Portugal (The Mapping of Social Responsibility in Portugal)
Resumo:
Conferência multidisciplinar e multicultural.
Resumo:
To meet the increasing demands of the complex inter-organizational processes and the demand for continuous innovation and internationalization, it is evident that new forms of organisation are being adopted, fostering more intensive collaboration processes and sharing of resources, in what can be called collaborative networks (Camarinha-Matos, 2006:03). Information and knowledge are crucial resources in collaborative networks, being their management fundamental processes to optimize. Knowledge organisation and collaboration systems are thus important instruments for the success of collaborative networks of organisations having been researched in the last decade in the areas of computer science, information science, management sciences, terminology and linguistics. Nevertheless, research in this area didn’t give much attention to multilingual contexts of collaboration, which pose specific and challenging problems. It is then clear that access to and representation of knowledge will happen more and more on a multilingual setting which implies the overcoming of difficulties inherent to the presence of multiple languages, through the use of processes like localization of ontologies. Although localization, like other processes that involve multilingualism, is a rather well-developed practice and its methodologies and tools fruitfully employed by the language industry in the development and adaptation of multilingual content, it has not yet been sufficiently explored as an element of support to the development of knowledge representations - in particular ontologies - expressed in more than one language. Multilingual knowledge representation is then an open research area calling for cross-contributions from knowledge engineering, terminology, ontology engineering, cognitive sciences, computational linguistics, natural language processing, and management sciences. This workshop joined researchers interested in multilingual knowledge representation, in a multidisciplinary environment to debate the possibilities of cross-fertilization between knowledge engineering, terminology, ontology engineering, cognitive sciences, computational linguistics, natural language processing, and management sciences applied to contexts where multilingualism continuously creates new and demanding challenges to current knowledge representation methods and techniques. In this workshop six papers dealing with different approaches to multilingual knowledge representation are presented, most of them describing tools, approaches and results obtained in the development of ongoing projects. In the first case, Andrés Domínguez Burgos, Koen Kerremansa and Rita Temmerman present a software module that is part of a workbench for terminological and ontological mining, Termontospider, a wiki crawler that aims at optimally traverse Wikipedia in search of domainspecific texts for extracting terminological and ontological information. The crawler is part of a tool suite for automatically developing multilingual termontological databases, i.e. ontologicallyunderpinned multilingual terminological databases. In this paper the authors describe the basic principles behind the crawler and summarized the research setting in which the tool is currently tested. In the second paper, Fumiko Kano presents a work comparing four feature-based similarity measures derived from cognitive sciences. The purpose of the comparative analysis presented by the author is to verify the potentially most effective model that can be applied for mapping independent ontologies in a culturally influenced domain. For that, datasets based on standardized pre-defined feature dimensions and values, which are obtainable from the UNESCO Institute for Statistics (UIS) have been used for the comparative analysis of the similarity measures. The purpose of the comparison is to verify the similarity measures based on the objectively developed datasets. According to the author the results demonstrate that the Bayesian Model of Generalization provides for the most effective cognitive model for identifying the most similar corresponding concepts existing for a targeted socio-cultural community. In another presentation, Thierry Declerck, Hans-Ulrich Krieger and Dagmar Gromann present an ongoing work and propose an approach to automatic extraction of information from multilingual financial Web resources, to provide candidate terms for building ontology elements or instances of ontology concepts. The authors present a complementary approach to the direct localization/translation of ontology labels, by acquiring terminologies through the access and harvesting of multilingual Web presences of structured information providers in the field of finance, leading to both the detection of candidate terms in various multilingual sources in the financial domain that can be used not only as labels of ontology classes and properties but also for the possible generation of (multilingual) domain ontologies themselves. In the next paper, Manuel Silva, António Lucas Soares and Rute Costa claim that despite the availability of tools, resources and techniques aimed at the construction of ontological artifacts, developing a shared conceptualization of a given reality still raises questions about the principles and methods that support the initial phases of conceptualization. These questions become, according to the authors, more complex when the conceptualization occurs in a multilingual setting. To tackle these issues the authors present a collaborative platform – conceptME - where terminological and knowledge representation processes support domain experts throughout a conceptualization framework, allowing the inclusion of multilingual data as a way to promote knowledge sharing and enhance conceptualization and support a multilingual ontology specification. In another presentation Frieda Steurs and Hendrik J. Kockaert present us TermWise, a large project dealing with legal terminology and phraseology for the Belgian public services, i.e. the translation office of the ministry of justice, a project which aims at developing an advanced tool including expert knowledge in the algorithms that extract specialized language from textual data (legal documents) and whose outcome is a knowledge database including Dutch/French equivalents for legal concepts, enriched with the phraseology related to the terms under discussion. Finally, Deborah Grbac, Luca Losito, Andrea Sada and Paolo Sirito report on the preliminary results of a pilot project currently ongoing at UCSC Central Library, where they propose to adapt to subject librarians, employed in large and multilingual Academic Institutions, the model used by translators working within European Union Institutions. The authors are using User Experience (UX) Analysis in order to provide subject librarians with a visual support, by means of “ontology tables” depicting conceptual linking and connections of words with concepts presented according to their semantic and linguistic meaning. The organizers hope that the selection of papers presented here will be of interest to a broad audience, and will be a starting point for further discussion and cooperation.
Resumo:
MOOC (as an acronym for Massive Open Online Courses) are a quite new model for the delivery of online learning to students. As “Massive” and “Online”, these courses are proposed to be accessible to many more learners than would be possible through conventional teaching. As “Open” they are (frequently) free of charge and participation is not limited by the geographical situation of the learners, creating new learning opportunities in Higher Education Institutions (HEI). In this paper we describe a recently started project “Matemática 100 STRESS” (Math Without STRESS) integrated in the e-IPP project | e-Learning Unit of Porto’s Polytechnic Institute (IPP) which has created its own MOOC platform and launched its first course – Probabilities and Combinatorics – in early June/2014. In this MOOC development were involved several lecturers from four of the seven IPP schools.
Resumo:
Wireless Body Area Network (WBAN) is the most convenient, cost-effective, accurate, and non-invasive technology for e-health monitoring. The performance of WBAN may be disturbed when coexisting with other wireless networks. Accordingly, this paper provides a comprehensive study and in-depth analysis of coexistence issues and interference mitigation solutions in WBAN technologies. A thorough survey of state-of-the art research in WBAN coexistence issues is conducted. The survey classified, discussed, and compared the studies according to the parameters used to analyze the coexistence problem. Solutions suggested by the studies are then classified according to the followed techniques and concomitant shortcomings are identified. Moreover, the coexistence problem in WBAN technologies is mathematically analyzed and formulas are derived for the probability of successful channel access for different wireless technologies with the coexistence of an interfering network. Finally, extensive simulations are conducted using OPNET with several real-life scenarios to evaluate the impact of coexistence interference on different WBAN technologies. In particular, three main WBAN wireless technologies are considered: IEEE 802.15.6, IEEE 802.15.4, and low-power WiFi. The mathematical analysis and the simulation results are discussed and the impact of interfering network on the different wireless technologies is compared and analyzed. The results show that an interfering network (e.g., standard WiFi) has an impact on the performance of WBAN and may disrupt its operation. In addition, using low-power WiFi for WBANs is investigated and proved to be a feasible option compared to other wireless technologies.
Resumo:
Mestrado em Engenharia Mecânica – Especialização Gestão Industrial
Resumo:
Mestrado em Engenharia Informática - Área de Especialização em Tecnologias do Conhecimento e Decisão
Resumo:
MOOC (as an acronym for Massive Open Online Courses) are a quite new model for the delivery of online learning to students. As “Massive” and “Online”, these courses are proposed to be accessible to many more learners than would be possible through conventional teaching. As “Open” they are (frequently) free of charge and participation is not limited by the geographical situation of the learners, creating new learning opportunities in Higher Education Institutions (HEI). In this paper we describe a recently started project “Matemática 100 STRESS” (Math Without STRESS) integrated in the e-IPP project | e-Learning Unit of Porto’s Polytechnic Institute (IPP) which has created its own MOOC platform and launched its first course – Probabilities and Combinatorics – in early June/2014. In this MOOC development were involved several lecturers from four of the seven IPP schools.
Resumo:
In this paper we address an order processing optimization problem known as the Minimization of Open Stacks Problem (MOSP). This problem consists in finding the best sequence for manufacturing the different products required by costumers, in a setting where only one product can be made at a time. The objective is to minimize the maximum number of incomplete orders from costumers that are being processed simultaneously. We present an integer programming model, based on the existence of a perfect elimination order in interval graphs, which finds an optimal sequence for the costumers orders. Among other economic advantages, manufacturing the products in this optimal sequence reduces the amount of space needed to store incomplete orders.
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
Many-core platforms are an emerging technology in the real-time embedded domain. These devices offer various options for power savings, cost reductions and contribute to the overall system flexibility, however, issues such as unpredictability, scalability and analysis pessimism are serious challenges to their integration into the aforementioned area. The focus of this work is on many-core platforms using a limited migrative model (LMM). LMM is an approach based on the fundamental concepts of the multi-kernel paradigm, which is a promising step towards scalable and predictable many-cores. In this work, we formulate the problem of real-time application mapping on a many-core platform using LMM, and propose a three-stage method to solve it. An extended version of the existing analysis is used to assure that derived mappings (i) guarantee the fulfilment of timing constraints posed on worst-case communication delays of individual applications, and (ii) provide an environment to perform load balancing for e.g. energy/thermal management, fault tolerance and/or performance reasons.
Resumo:
The underground scenarios are one of the most challenging environments for accurate and precise 3d mapping where hostile conditions like absence of Global Positioning Systems, extreme lighting variations and geometrically smooth surfaces may be expected. So far, the state-of-the-art methods in underground modelling remain restricted to environments in which pronounced geometric features are abundant. This limitation is a consequence of the scan matching algorithms used to solve the localization and registration problems. This paper contributes to the expansion of the modelling capabilities to structures characterized by uniform geometry and smooth surfaces, as is the case of road and train tunnels. To achieve that, we combine some state of the art techniques from mobile robotics, and propose a method for 6DOF platform positioning in such scenarios, that is latter used for the environment modelling. A visual monocular Simultaneous Localization and Mapping (MonoSLAM) approach based on the Extended Kalman Filter (EKF), complemented by the introduction of inertial measurements in the prediction step, allows our system to localize himself over long distances, using exclusively sensors carried on board a mobile platform. By feeding the Extended Kalman Filter with inertial data we were able to overcome the major problem related with MonoSLAM implementations, known as scale factor ambiguity. Despite extreme lighting variations, reliable visual features were extracted through the SIFT algorithm, and inserted directly in the EKF mechanism according to the Inverse Depth Parametrization. Through the 1-Point RANSAC (Random Sample Consensus) wrong frame-to-frame feature matches were rejected. The developed method was tested based on a dataset acquired inside a road tunnel and the navigation results compared with a ground truth obtained by post-processing a high grade Inertial Navigation System and L1/L2 RTK-GPS measurements acquired outside the tunnel. Results from the localization strategy are presented and analyzed.
Resumo:
Teaching and learning computer programming is as challenging as difficult. Assessing the work of students and providing individualised feedback to all is time-consuming and error prone for teachers and frequently involves a time delay. The existent tools and specifications prove to be insufficient in complex evaluation domains where there is a greater need to practice. At the same time Massive Open Online Courses (MOOC) are appearing revealing a new way of learning, more dynamic and more accessible. However this new paradigm raises serious questions regarding the monitoring of student progress and its timely feedback. This paper provides a conceptual design model for a computer programming learning environment. This environment uses the portal interface design model gathering information from a network of services such as repositories and program evaluators. The design model includes also the integration with learning management systems, a central piece in the MOOC realm, endowing the model with characteristics such as scalability, collaboration and interoperability. This model is not limited to the domain of computer programming and can be adapted to any complex area that requires systematic evaluation with immediate feedback.
Resumo:
Massive Open Online Courses (MOOC) are gaining prominence in transversal teaching-learning strategies. However, there are many issues still debated, namely assessment, recognized largely as a cornerstone in Education. The large number of students involved requires a redefinition of strategies that often use approaches based on tasks or challenging projects. In these conditions and due to this approach, assessment is made through peer-reviewed assignments and quizzes online. The peer-reviewed assignments are often based upon sample answers or topics, which guide the student in the task of evaluating peers. This chapter analyzes the grading and evaluation in MOOCs, especially in science and engineering courses, within the context of education and grading methodologies and discusses possible perspectives to pursue grading quality in massive e-learning courses.
Resumo:
The present work aims to achieve and further develop a hydrogeomechanical approach in Caldas da Cavaca hydromineral system rock mass (Aguiar da Beira, NW Portugal), and contribute to a better understanding of the hydrogeological conceptual site model. A collection of several data, namely geology, hydrogeology, rock and soil geotechnics, borehole hydraulics and hydrogeomechanics, was retrieved from three rock slopes (Lagoa, Amores and Cancela). To accomplish a comprehensive analysis and rock engineering conceptualisation of the site, a multi‐technical approach were used, such as, field and laboratory techniques, hydrogeotechnical mapping, hydrogeomechanical zoning and hydrogeomechanical scheme classifications and indexes. In addition, a hydrogeomechanical data analysis and assessment, such as Hydro‐Potential (HP)‐Value technique, JW Joint Water Reduction index, Hydraulic Classification (HC) System were applied on rock slopes. The hydrogeomechanical zone HGMZ 1 of Lagoa slope achieved higher hydraulic conductivities with poorer rock mass quality results, followed by the hydrogeomechanical zone HGMZ 2 of Lagoa slope, with poor to fair rock mass quality and lower hydraulic parameters. In addition, Amores slope had a fair to good rock mass quality and the lowest hydraulic conductivity. The hydrogeomechanical zone HGMZ 3 of Lagoa slope, and the hydrogeomechanical zones HGMZ 1 and HGMZ 2 of Cancela slope had a fair to poor rock mass quality but were completely dry. Geographical Information Systems (GIS) mapping technologies was used in overall hydrogeological and hydrogeomechanical data integration in order to improve the hydrogeological conceptual site model.
Resumo:
Distance learning - where students take courses (attend classes, get activities and other sort of learning materials) while being physically separated from their instructors, for larger part of the course duration - is far from being a “new event”. Since the middle of the nineteenth century, this has been done through Radio, Mail and TV, taking advantage of the full educational potential that these media resources had to offer at the time. However, in recent times we have, at our complete disposal, the “magic wonder” of communication and globalization - the Internet. Taking advantage of a whole new set of educational opportunities, with a more or less unselfish “look” to economic interests, focusing its concern on a larger and collective “welfare”, contributing to the development of a more “equitable” world, with regard to educational opportunities, the Massive Open Online Courses (MOOCs) were born and have become an important feature of the higher education in recent years. Many people have been talking about MOOCs as a potential educational revolution, which has arrived from North America, still growing and spreading, referring to its benefits and/or disadvantages. The Polytechnic Institute of Porto, also known as IPP, is a Higher Education Portuguese institution providing undergraduate and graduate studies, which has a solid history of online education and innovation through the use of technology, and it has been particularly interested and focused on MOOC developments, based on an open educational policy in order to try to implement some differentiated learning strategies to its actual students and as a way to attract future ones. Therefore, in July 2014, IPP launched the first Math MOOC on its own platform. This paper describes the requirements, the resulting design and implementation of a mathematics MOOC, which was essentially addressed to three target populations: - pre-college students or individuals wishing to update their Math skills or that need to prepare for the National Exam of Mathematics; - Higher Education students who have not attended in High School, this subject, and who feel the need to acquire basic knowledge about some of the topics covered; - High School Teachers who may use these resources with their students allowing them to develop teaching methodologies like "Flipped Classroom” (available at http://www.opened.ipp.pt/). The MOOC was developed in partnership with several professors from several schools from IPP, gathering different math competences and backgrounds to create and put to work different activities such video lectures and quizzes. We will also try to briefly discuss the advertising strategy being developed to promote this MOOC, since it is not offered through a main MOOC portal, such as Coursera or Udacity.