130 resultados para OPTIMIZATION PROCESS
Resumo:
Na tentativa de se otimizar o processo de fabrico associado a uma tinta base aquosa (TBA), para minimizar os desvios de viscosidade final verificados, e de desenvolver um novo adjuvante plastificante para betão, recorreu-se a métodos e ferramentas estatísticas para a concretização do projeto. Relativamente à TBA, procedeu-se numa primeira fase a um acompanhamento do processo de fabrico, a fim de se obter todos os dados mais relevantes que poderiam influenciar a viscosidade final da tinta. Através de uma análise de capacidade ao parâmetro viscosidade, verificou-se que esta não estava sempre dentro das especificações do cliente, sendo o cpk do processo inferior a 1. O acompanhamento do processo resultou na escolha de 4 fatores, que culminou na realização de um plano fatorial 24. Após a realização dos ensaios, efetuou-se uma análise de regressão a um modelo de primeira ordem, não tendo sido esta significativa, o que implicou a realização de mais 8 ensaios nos pontos axiais. Com arealização de uma regressão passo-a-passo, obteve-se uma aproximação viável a um modelo de segunda ordem, que culminou na obtenção dos melhores níveis para os 4 fatores que garantem que a resposta viscosidade se situa no ponto médio do intervalo de especificação (1400 mPa.s). Quanto ao adjuvante para betão, o objetivo é o uso de polímeros SIKA ao invés da matériaprima comum neste tipo de produtos, tendo em conta o custo final da formulação. Escolheram-se 3 fatores importantes na formulação do produto (mistura de polímeros, mistura de hidrocarbonetos e % de sólidos), que resultou numa matriz fatorial 23. Os ensaios foram realizados em triplicado, em pasta de cimento, um para cada tipo de cimento mais utilizado em Portugal. Ao efetuar-se a análise estatística de dados obtiveram-se modelos de primeira ordem para cada tipo de cimento. O processo de otimização consistiu em otimizar uma função custo associada à formulação, garantindo sempre uma resposta superior à observada pelo produto considerado padrão. Os resultados foram animadores uma vez que se obteve para os 3 tipos de cimentocustos abaixo do requerido e espalhamento acima do observado pelo padrão.
Resumo:
New lipophilic hydroxycinnamic acid based derivatives were designed and synthesized and their antioxidant and neuroprotective activities evaluated. The chemical modification introduced in the cinnamic acid scaffold leads to compounds with amplified lipophilicity and in general with increased antioxidant activity when compared to natural models (caffeic and ferulic acids). The compounds did not display cytotoxicity and present a significant neuroprotective effect against 6-OH-DA induced damage to SH-SY5Y cells. Compound 6 stands out as an efficient radical scavenger and iron(II) chelator that ensures drug-like properties. Moreover, neuroprotection against oxidative damage was observed even at low concentration (1 μM). Therefore, compound 6 developed by a biology-oriented approach displays a combination of important features for a further optimization process that will generate a new effective antioxidant with therapeutic application for oxidative-stress-related events, namely neurodegenerative diseases.
Resumo:
Numa sociedade com elevado consumo energético, a dependência de combustíveis fósseis em evidente diminuição de disponibilidades é um tema cada vez mais preocupante, assim como a poluição atmosférica resultante da sua utilização. Existe, portanto, uma necessidade crescente de recorrer a energias renováveis e promover a otimização e utilização de recursos. A digestão anaeróbia (DA) de lamas é um processo de estabilização de lamas utilizado nas Estações de Tratamento de Águas Residuais (ETAR) e tem, como produtos finais, a lama digerida e o biogás. Maioritariamente constituído por gás metano, o biogás pode ser utilizado como fonte de energia, reduzindo, deste modo, a dependência energética da ETAR e a emissão de gases com efeito de estufa para a atmosfera. A otimização do processo de DA das lamas é essencial para o aumento da produção de biogás. No presente relatório de estágio, as Redes Neuronais Artificiais (RNA) foram aplicadas ao processo de DA de lamas de ETAR. As RNA são modelos simplificados inspirados no funcionamento das células neuronais humanas e que adquirem conhecimento através da experiência. Quando a RNA é criada e treinada, produz valores de output aproximadamente corretos para os inputs fornecidos. Uma vez que as DA são um processo bastante complexo, a sua otimização apresenta diversas dificuldades. Foi esse o motivo para recorrer a RNA na otimização da produção de biogás nos digestores das ETAR de Espinho e de Ílhavo da AdCL, utilizando o software NeuralToolsTM da PalisadeTM, contribuindo, desta forma, para a compreensão do processo e do impacto de algumas variáveis na produção de biogás.
Resumo:
Nos dias de hoje as diferentes indústrias e sectores de atividade económica assentam os seus pilares de desenvolvimento na procura constante de fontes de melhoria, para que assim seja possível melhorar a relação qualidade / preço. Embora no setor industrial as melhorias e inovações tecnológicas surjam a cada dia, estas por si não chegam. Grande parte da otimização incorrida, quer na indústria de manufatura, quer na indústria de serviços, surge da “simples” eliminação de desperdícios, e da procura constante por fontes de melhoria. Com o objetivo traçado, a Grohe Portugal Componentes Sanitários, Lda. propôs a eliminação de desperdícios no âmbito do abastecimento de componentes às linhas de montagem existentes na sua fábrica em Albergaria-a-Velha. Este processo passa não só por uma otimização do tempo de abastecimento e das quantidades de abastecimento, mas também consiste na reestruturação das diferentes rotinas de abastecimento. Todo este processo de otimização estará assente no conceito de Mizusumashi. O Mizusumashi, ou comboio logístico como muitas vezes é referenciado, surge com o objetivo de separar a tarefa de abastecimento da função de montagem. A sua origem surge da adaptação do conceito de Milk Run (volta do leiteiro) à logística interna. Torna-se de relevo referir que, para que este “simples” conceito funcione com uma eficiência que proporcione a sua aplicação, são vastos os fatores que necessitam de ajustamentos ou mesmo, em alguns casos, de uma reestruturação completa. O trabalho desenvolvido nestas instalações fabris, e que culminou neste documento, teve como princípio a análise, avaliação e implementação de melhorias no sistema de abastecimento às linhas de montagem. Todo o processo de abastecimento foi analisado e desconstruído nas suas componentes, para que assim fosse possível desenhar o plano de reestruturação indicado. Foram implementadas melhorias de layout, tempos e tarefas. Os resultados foram positivos tendo em conta o objetivo inicial. Todo este plano foi pensado e documentado com o objetivo de tornar este sistema adaptável a possíveis mudanças. Foi possível então criar um sistema voltado para um plano de melhoria contínua. Com um abastecimento normalizado e rotinado a gestão de stocks é mais precisa diminuindo assim os desperdícios inerentes a estas funções.
Resumo:
Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.
Resumo:
Manufacturing processes need permanently to innovate and optimize because any can be susceptible to continuous improvement. Innovation and commitment to the development of these new solutions resulting from existing expertise and the continuing need to increase productivity, flexibility and ensuring the necessary quality of the manufactured products. To increase flexibility, it is necessary to significantly reduce set-up times and lead time in order to ensure the delivery of products ever faster. This objective can be achieved through a normalization of the pultrusion line elements. Implicitly, there is an increase of productivity by this way. This work is intended to optimize the pultrusion process of structural profiles. We consider all elements of the system from the storehouse of the fibers (rack) to the pultrusion die. Particular attention was devoted to (a) the guidance system of the fibers and webs, (b) the resin container where the fibers are impregnated, (c) standard plates positioning of the fibers towards the entrance to the spinneret and also (d) reviewed the whole process of assembling and fixing the die as well as its the heating system. With the implementation of these new systems was achieved a significant saving of time set-up and were clearly reduced the unit costs of production. Quality assurance was also increased.
Resumo:
Coffee silverskin is a major roasting by-product that could be valued as a source of antioxidant compounds. The effect of the major variables (solvent polarity, temperature and extraction time) affecting the extraction yields of bioactive compounds and antioxidant activity of silverskin extracts was evaluated. The extracts composition varied significantly with the extraction conditions used. A factorial experimental design showed that the use of a hydroalcoholic solvent (50%:50%) at 40 °C for 60 min is a sustainable option to maximize the extraction yield of bioactive compounds and the antioxidant capacity of extracts. Using this set of conditions it was possible to obtain extracts containing total phenolics (302.5 ± 7.1 mg GAE/L), tannins (0.43 ± 0.06 mg TAE/L), and flavonoids (83.0 ± 1.4 mg ECE/L), exhibiting DPPHradical dot scavenging activity (326.0 ± 5.7 mg TE/L) and ferric reducing antioxidant power (1791.9 ± 126.3 mg SFE/L). These conditions allowed, in comparison with other “more effective” for some individual parameters, a cost reduction, saving time and energy.
Resumo:
Metaheuristics performance is highly dependent of the respective parameters which need to be tuned. Parameter tuning may allow a larger flexibility and robustness but requires a careful initialization. The process of defining which parameters setting should be used is not obvious. The values for parameters depend mainly on the problem, the instance to be solved, the search time available to spend in solving the problem, and the required quality of solution. This paper presents a learning module proposal for an autonomous parameterization of Metaheuristics, integrated on a Multi-Agent System for the resolution of Dynamic Scheduling problems. The proposed learning module is inspired on Autonomic Computing Self-Optimization concept, defining that systems must continuously and proactively improve their performance. For the learning implementation it is used Case-based Reasoning, which uses previous similar data to solve new cases. In the use of Case-based Reasoning it is assumed that similar cases have similar solutions. After a literature review on topics used, both AutoDynAgents system and Self-Optimization module are described. Finally, a computational study is presented where the proposed module is evaluated, obtained results are compared with previous ones, some conclusions are reached, and some future work is referred. It is expected that this proposal can be a great contribution for the self-parameterization of Metaheuristics and for the resolution of scheduling problems on dynamic environments.
Resumo:
A QuEChERS method has been developed for the determination of 14 organochlorine pesticides in 14 soils from different Portuguese regions with wide range composition. The extracts were analysed by GC-ECD (where GC-ECD is gas chromatography-electron-capture detector) and confirmed by GC-MS/MS (where MS/MS is tandem mass spectrometry). The organic matter content is a key factor in the process efficiency. An optimization was carried out according to soils organic carbon level, divided in two groups: HS (organic carbon>2.3%) and LS (organic carbon<2.3%). Themethod was validated through linearity, recovery, precision and accuracy studies. The quantification was carried out using a matrixmatched calibration to minimize the existence of the matrix effect. Acceptable recoveries were obtained (70–120%) with a relative standard deviation of ≤16% for the three levels of contamination. The ranges of the limits of detection and of the limits of quantification in soils HS were from 3.42 to 23.77 μg kg−1 and from 11.41 to 79.23 μg kg−1, respectively. For LS soils, the limits of detection ranged from 6.11 to 14.78 μg kg−1 and the limits of quantification from 20.37 to 49.27 μg kg−1. In the 14 collected soil samples only one showed a residue of dieldrin (45.36 μg kg−1) above the limit of quantification. This methodology combines the advantages of QuEChERS, GC-ECD detection and GC-MS/MS confirmation producing a very rapid, sensitive and reliable procedure which can be applied in routine analytical laboratories.
Resumo:
A Box–Behnken factorial design coupled with surface response methodology was used to evaluate the effects of temperature, pH and initial concentration in the Cu(II) sorption process onto the marine macroalgae Ascophyllum nodosum. The effect of the operating variables on metal uptake capacitywas studied in a batch system and a mathematical model showing the influence of each variable and their interactions was obtained. Study ranges were 10–40ºC for temperature, 3.0–5.0 for pH and 50–150mgL−1 for initial Cu(II) concentration. Within these ranges, the biosorption capacity is slightly dependent on temperature but markedly increases with pH and initial concentration of Cu(II). The uptake capacities predicted by the model are in good agreement with the experimental values. Maximum biosorption capacity of Cu(II) by A. nodosum is 70mgg−1 and corresponds to the following values of those variables: temperature = 40ºC, pH= 5.0 and initial Cu(II) concentration = 150mgL−1.
Resumo:
Solvent extraction is considered as a multi-criteria optimization problem, since several chemical species with similar extraction kinetic properties are frequently present in the aqueous phase and the selective extraction is not practicable. This optimization, applied to mixer–settler units, considers the best parameters and operating conditions, as well as the best structure or process flow-sheet. Global process optimization is performed for a specific flow-sheet and a comparison of Pareto curves for different flow-sheets is made. The positive weight sum approach linked to the sequential quadratic programming method is used to obtain the Pareto set. In all investigated structures, recovery increases with hold-up, residence time and agitation speed, while the purity has an opposite behaviour. For the same treatment capacity, counter-current arrangements are shown to promote recovery without significant impairment in purity. Recycling the aqueous phase is shown to be irrelevant, but organic recycling with as many stages as economically feasible clearly improves the design criteria and reduces the most efficient organic flow-rate.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
This paper presents an optimization approach for the job shop scheduling problem (JSSP). The JSSP is a difficult problem in combinatorial optimization for which extensive investigation has been devoted to the development of efficient algorithms. The proposed approach is based on a genetic algorithm technique. The scheduling rules such as SPT and MWKR are integrated into the process of genetic evolution. The chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the priorities and delay times of the operations are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The approach is tested on a set of standard instances taken from the literature and compared with other approaches. The computation results validate the effectiveness of the proposed approach.
Resumo:
This study addresses to the optimization of pultrusion manufacturing process from the energy-consumption point of view. The die heating system of external platen heaters commonly used in the pultrusion machines is one of the components that contribute the most to the high consumption of energy of pultrusion process. Hence, instead of the conventional multi-planar heaters, a new internal die heating system that leads to minor heat losses is proposed. The effect of the number and relative position of the embedded heaters along the die is also analysed towards the setting up of the optimum arrangement that minimizes both the energy rate and consumption. Simulation and optimization processes were greatly supported by Finite Element Analysis (FEA) and calibrated with basis on the temperature profile computed through thermography imaging techniques. The main outputs of this study allow to conclude that the use of embedded cylindrical resistances instead of external planar heaters leads to drastic reductions of both the power consumption and the warm-up periods of the die heating system. For the analysed die tool and process, savings on energy consumption up to 60% and warm-up period stages less than an half hour were attained with the new internal heating system. The improvements achieved allow reducing the power requirements on pultrusion process, and thus minimize industrial costs and contribute to a more sustainable pultrusion manufacturing industry.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.