37 resultados para LARGE APERTURE GRB OBSERVATORY. (LAGO) - CONGRESOS, CONFERENCIAS, ETC.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective and usable WSN system architectures that address both functional and non-functional requirements in an integrated fashion. This poster outlines the EMMON system architecture for large-scale, dense, real-time embedded monitoring. It provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to maintain as much as flexibility as possible while meeting specific applications requirements. EMMON has been validated through extensive analytical, simulation and experimental evaluations, including through a 300+ nodes test-bed the largest single-site WSN test-bed in Europe.
Resumo:
Most research work on WSNs has focused on protocols or on specific applications. There is a clear lack of easy/ready-to-use WSN technologies and tools for planning, implementing, testing and commissioning WSN systems in an integrated fashion. While there exists a plethora of papers about network planning and deployment methodologies, to the best of our knowledge none of them helps the designer to match coverage requirements with network performance evaluation. In this paper we aim at filling this gap by presenting an unified toolset, i.e., a framework able to provide a global picture of the system, from the network deployment planning to system test and validation. This toolset has been designed to back up the EMMON WSN system architecture for large-scale, dense, real-time embedded monitoring. It includes network deployment planning, worst-case analysis and dimensioning, protocol simulation and automatic remote programming and hardware testing tools. This toolset has been paramount to validate the system architecture through DEMMON1, the first EMMON demonstrator, i.e., a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
Wireless sensor networks (WSNs) have attracted growing interest in the last decade as an infrastructure to support a diversity of ubiquitous computing and cyber-physical systems. However, most research work has focused on protocols or on specific applications. As a result, there remains a clear lack of effective, feasible and usable system architectures that address both functional and non-functional requirements in an integrated fashion. In this paper, we outline the EMMON system architecture for large-scale, dense, real-time embedded monitoring. EMMON provides a hierarchical communication architecture together with integrated middleware and command and control software. It has been designed to use standard commercially-available technologies, while maintaining as much flexibility as possible to meet specific applications requirements. The EMMON architecture has been validated through extensive simulation and experimental evaluation, including a 300+ node test-bed, which is, to the best of our knowledge, the largest single-site WSN test-bed in Europe to date.
Resumo:
We focus on large-scale and dense deeply embedded systems where, due to the large amount of information generated by all nodes, even simple aggregate computations such as the minimum value (MIN) of the sensor readings become notoriously expensive to obtain. Recent research has exploited a dominance-based medium access control(MAC) protocol, the CAN bus, for computing aggregated quantities in wired systems. For example, MIN can be computed efficiently and an interpolation function which approximates sensor data in an area can be obtained efficiently as well. Dominance-based MAC protocols have recently been proposed for wireless channels and these protocols can be expected to be used for achieving highly scalable aggregate computations in wireless systems. But no experimental demonstration is currently available in the research literature. In this paper, we demonstrate that highly scalable aggregate computations in wireless networks are possible. We do so by (i) building a new wireless hardware platform with appropriate characteristics for making dominance-based MAC protocols efficient, (ii) implementing dominance-based MAC protocols on this platform, (iii) implementing distributed algorithms for aggregate computations (MIN, MAX, Interpolation) using the new implementation of the dominance-based MAC protocol and (iv) performing experiments to prove that such highly scalable aggregate computations in wireless networks are possible.
Resumo:
We use the term Cyber-Physical Systems to refer to large-scale distributed sensor systems. Locating the geographic coordinates of objects of interest is an important problemin such systems. We present a new distributed approach to localize objects and events of interest in time complexity independent of number of nodes.
Resumo:
Dynamical systems theory in this work is used as a theoretical language and tool to design a distributed control architecture for a team of three robots that must transport a large object and simultaneously avoid collisions with either static or dynamic obstacles. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constraints are modeled as attractors (i.e. asymptotic stable states) of the behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotical stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
In this paper dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for a team of two robots that must transport a large object and simultaneously avoid collisions with obstacles (either static or dynamic). This work extends the previous work with two robots (see [1] and [5]). However here we demonstrate that it’s possible to simplify the architecture presented in [1] and [5] and reach an equally stable global behavior. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constrains are modeled as attractors (i.e. asymptotic stable states) of a behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotic stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
Dissertation to obtain the degree of Master in Music - Artistic Interpretation
Resumo:
Dissertação para obtenção do grau de Mestre em Música - Interpretação Artística
Resumo:
Remote engineering (also known as online engineering) may be defined as a combination of control engineering and telematics. In this area, specific activities require computacional skills in order to develop projects where electrical devives are monitored and / or controlled, in an intercative way, through a distributed network (e.g. Intranet or Internet). In our specific case, we will be dealing with an industrial plant. Within the last few years, there has been an increase in the number of activities related to remote engineering, which may be connected to the phenomenon of the large extension experienced by the Internet (e.g. bandwith, number of users, development tools, etc.). This increase opens new and future possibilities to the implementation of advance teleworking (or e-working) positions. In this paper we present the architecture for a remote application, accessible through the Internet, able to monitor and control a roller hearth kiln, used in a ceramics industry for firing materials. The proposed architecture is based on a micro web server, whose main function is to monitor and control the firing process, by reading the data from a series of temperature sensors and by controlling a series of electronic valves and servo motors. This solution is also intended to be a low-cost alternative to other potential solutions. The temperature readings are obtained through K-type thermopairs and the gas flow is controlled through electrovalves. As the firing process should not be stopped before its complete end, the system is equipped with a safety device for that specific purpose. For better understanding the system to be automated and its operation we decided to develop a scale model (100:1) and experiment on it the devised solution, based on a Micro Web Server.
Resumo:
The use of remote labs in undergraduate courses has been reported in literature several times since the mid 90's. Nevertheless, very few articles present results about the correspondent learning gains obtained by students, and in what conditions those systems can be more efficient, thus suggesting a lack of data concerning their pedagogical effectiveness. This paper addresses such a gap by presenting some initial findings concerning the use of a remote lab (VISIR), in a large undergraduate course on Physics, with over 550 students enrolled.
Resumo:
The use of remote labs in undergraduate courses has been reported in literature several times since the mid 90's. Nevertheless, very few articles present results about the learning gains obtained by students using them, especially with a large number of students, thus suggesting a lack of data concerning their pedagogical effectiveness. This paper addresses such a gap by presenting some preliminary results concerning the use of a remote laboratory, known as VISIR, in a large undergraduate course on Applied Physics, with over 500 students enrolled.
Impact of design options in zero energy building conception: the case of large buildings in Portugal
Resumo:
The new recast of Directive 2010/31/EU in order to implement the new concept NZEB in new buildings, is to be fully respected by all Member States, and is revealed as important measure to promote the reduction of energy consumption of buildings and encouraging the use of renewable energy. In this study, it was tested the applicability of the nearly zero energy building concept to a big size office building and its impact after a 50-years life cycle span.
Resumo:
Nesta dissertação aborda-se a aplicação de Leis de Potência (LPs), também designadas de Leis de Pareto ou Leis de Zipf, a dados económicos. As LPs são distribuições estatísticas amplamente usadas na compreensão de sistemas naturais e artificiais. O aparecimento das LPs deve-se a Vilfredo Pareto que, no século XIX, publicou o manual de economia política,“Cours d’Economie Politique”. Nesse manual refere que grande parte da economia mundial segue uma LP, em que 20% da população reúne 80% da riqueza do país. Esta propriedade carateriza uma variável que segue uma distribuição de Pareto (ou LP). Desde então, as LPs foram aplicadas a outros fenómenos, nomeadamente a ocorrência de palavras em textos, os sobrenomes das pessoas, a variação dos rendimentos pessoais ou de empresas, o número de vítimas de inundações ou tremores de terra, os acessos a sítios da internet, etc. Neste trabalho, é estudado um conjunto de dados relativos às fortunas particulares ou coletivas de pessoas ou organizações. Mais concretamente são analisados dados recolhidos sobre as fortunas das mulheres mais ricas do mundo, dos homens mais ricos no ramo da tecnologia, das famílias mais ricas, das 20 mulheres mais ricas da América, dos 400 homens mais ricos da América, dos homens mais ricos do mundo, dos estabelecimentos mais ricos do mundo, das empresas mais ricas do mundo e dos países mais ricos do mundo, bem como o valor de algumas empresas no mercado de ações. Os resultados obtidos revelam uma boa aproximação de parte desses dados a uma LP simples e uma boa aproximação pelos restantes dados a uma LP dupla. Observa-se, assim, diferenciação na forma de crescimento das fortunas nos diferentes casos estudados. Como trabalho futuro, procurar-se-á analisar estes e outros dados, utilizando outras distribuições estatísticas, como a exponencial ou a lognormal, que possuem comportamentos semelhantes à LP, com o intuito de serem comparados os resultados. Um outro aspeto interessante será o de encontrar a explicação analítica para as vantagens da aproximação de dados económicos por uma LP simples vs por uma LP dupla.
Resumo:
The intensive use of distributed generation based on renewable resources increases the complexity of power systems management, particularly the short-term scheduling. Demand response, storage units and electric and plug-in hybrid vehicles also pose new challenges to the short-term scheduling. However, these distributed energy resources can contribute significantly to turn the shortterm scheduling more efficient and effective improving the power system reliability. This paper proposes a short-term scheduling methodology based on two distinct time horizons: hour-ahead scheduling, and real-time scheduling considering the point of view of one aggregator agent. In each scheduling process, it is necessary to update the generation and consumption operation, and the storage and electric vehicles status. Besides the new operation condition, more accurate forecast values of wind generation and consumption are available, for the resulting of short-term and very short-term methods. In this paper, the aggregator has the main goal of maximizing his profits while, fulfilling the established contracts with the aggregated and external players.