204 resultados para Hydrothermal generation scheduling
Resumo:
The large increase of Distributed Generation (DG) in Power Systems (PS) and specially in distribution networks makes the management of distribution generation resources an increasingly important issue. Beyond DG, other resources such as storage systems and demand response must be managed in order to obtain more efficient and “green” operation of PS. More players, such as aggregators or Virtual Power Players (VPP), that operate these kinds of resources will be appearing. This paper proposes a new methodology to solve the distribution network short term scheduling problem in the Smart Grid context. This methodology is based on a Genetic Algorithms (GA) approach for energy resource scheduling optimization and on PSCAD software to obtain realistic results for power system simulation. The paper includes a case study with 99 distributed generators, 208 loads and 27 storage units. The GA results for the determination of the economic dispatch considering the generation forecast, storage management and load curtailment in each period (one hour) are compared with the ones obtained with a Mixed Integer Non-Linear Programming (MINLP) approach.
Resumo:
In the energy management of the isolated operation of small power system, the economic scheduling of the generation units is a crucial problem. Applying right timing can maximize the performance of the supply. The optimal operation of a wind turbine, a solar unit, a fuel cell and a storage battery is searched by a mixed-integer linear programming implemented in General Algebraic Modeling Systems (GAMS). A Virtual Power Producer (VPP) can optimal operate the generation units, assured the good functioning of equipment, including the maintenance, operation cost and the generation measurement and control. A central control at system allows a VPP to manage the optimal generation and their load control. The application of methodology to a real case study in Budapest Tech, demonstrates the effectiveness of this method to solve the optimal isolated dispatch of the DC micro-grid renewable energy park. The problem has been converged in 0.09 s and 30 iterations.
Resumo:
Hybridization of intelligent systems is a promising research field of computational intelligence focusing on combinations of multiple approaches to develop the next generation of intelligent systems. In this paper we will model a Manufacturing System by means of Multi-Agent Systems and Meta-Heuristics technologies, where each agent may represent a processing entity (machine). The objective of the system is to deal with the complex problem of Dynamic Scheduling in Manufacturing Systems.
Resumo:
In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding he management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
Most current-generation Wireless Sensor Network (WSN) nodes are equipped with multiple sensors of various types, and therefore support for multi-tasking and multiple concurrent applications is becoming increasingly common. This trend has been fostering the design of WSNs allowing several concurrent users to deploy applications with dissimilar requirements. In this paper, we extend the advantages of a holistic programming scheme by designing a novel compiler-assisted scheduling approach (called REIS) able to identify and eliminate redundancies across applications. To achieve this useful high-level optimization, we model each user application as a linear sequence of executable instructions. We show how well-known string-matching algorithms such as the Longest Common Subsequence (LCS) and the Shortest Common Super-sequence (SCS) can be used to produce an optimal merged monolithic sequence of the deployed applications that takes into account embedded scheduling information. We show that our approach can help in achieving about 60% average energy savings in processor usage compared to the normal execution of concurrent applications.
Resumo:
Synchronization is a challenging and important issue for time-sensitive Wireless Sensor Networks (WSN) since it requires a mutual spatiotemporal coordination between the nodes. In that concern, the IEEE 802.15.4/ZigBee protocols embody promising technologies for WSNs, but are still ambiguous on how to efficiently build synchronized multiple-cluster networks, specifically for the case of cluster-tree topologies. In fact, the current IEEE 802.15.4/ZigBee specifications restrict the synchronization to beacon-enabled (by the generation of periodic beacon frames) star networks, while they support multi-hop networking in mesh topologies, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this issue by unveiling the ambiguities regarding the use of the cluster-tree topology and proposing a synchronization mechanism based on Time Division Beacon Scheduling (TDBS) to build cluster-tree WSNs. In addition, we propose a methodology for efficiently managing duty-cycles in every cluster, ensuring the fairest use of bandwidth resources. The feasibility of the TDBS mechanism is clearly demonstrated through an experimental test-bed based on our open-source implementation of the IEEE 802.15.4/ZigBee protocols.
Resumo:
While the IEEE 802.15.4/Zigbee protocol stack is being considered as a promising technology for low-cost low-power Wireless Sensor Networks (WSNs), several issues in the standard specifications are still open. One of those ambiguous issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for ensuring QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multihop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes a synchronization mechanism based on Time Division Beacon Scheduling to construct cluster-tree WSNs. We also propose a methodology for an efficient duty cycle management in each router (cluster-head) of a cluster-tree WSN that ensures the fairest use of bandwidth resources. The feasibility of the proposal is clearly demonstrated through an experimental test bed based on our own implementation of the IEEE 802.15.4/Zigbee protocol.
Resumo:
The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This paper tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collision-free beacon frame scheduling schemes. We strongly believe that the results provided in this paper trigger a significant step towards the practical and efficient use of IEEE 802.15.4/Zigbee cluster-tree networks.
Resumo:
The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This report tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collisionfree beacon frame scheduling schemes.
Resumo:
A construction project is a group of discernible tasks or activities that are conduct-ed in a coordinated effort to accomplish one or more objectives. Construction projects re-quire varying levels of cost, time and other resources. To plan and schedule a construction project, activities must be defined sufficiently. The level of detail determines the number of activities contained within the project plan and schedule. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. In this context, the well-known Resource Constrained Project Scheduling Problem (RCPSP) has been studied during the last decades. In the RCPSP the activities of a project have to be scheduled such that the makespan of the project is minimized. So, the technological precedence constraints have to be observed as well as limitations of the renewable resources required to accomplish the activities. Once started, an activity may not be interrupted. This problem has been extended to a more realistic model, the multi-mode resource con-strained project scheduling problem (MRCPSP), where each activity can be performed in one out of several modes. Each mode of an activity represents an alternative way of combining different levels of resource requirements with a related duration. Each renewable resource has a limited availability for the entire project such as manpower and machines. This paper presents a hybrid genetic algorithm for the multi-mode resource-constrained pro-ject scheduling problem, in which multiple execution modes are available for each of the ac-tivities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme. It is evaluated the quality of the schedules and presents detailed comparative computational re-sults for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
This paper presents a genetic algorithm-based approach for project scheduling with multi-modes and renewable resources. In this problem activities of the project may be executed in more than one operating mode and renewable resource constraints are imposed. The objective function is the minimization of the project completion time. The idea of this approach is integrating a genetic algorithm with a schedule generation scheme. This study also proposes applying a local search procedure trying to yield a better solution when the genetic algorithm and the schedule generation scheme obtain a solution. The experimental results show that this algorithm is an effective method for solving this problem.
Resumo:
This paper presents a genetic algorithm for the multimode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme by introducing an improvement procedure. It is evaluated the quality of the schedule and present detailed comparative computational results for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
The energy resource scheduling is becoming increasingly important, as the use of distributed resources is intensified and massive gridable vehicle (V2G) use is envisaged. This paper presents a methodology for day-ahead energy resource scheduling for smart grids considering the intensive use of distributed generation and V2G. The main focus is the comparison of different EV management approaches in the day-ahead energy resources management, namely uncontrolled charging, smart charging, V2G and Demand Response (DR) programs i n the V2G approach. Three different DR programs are designed and tested (trip reduce, shifting reduce and reduce+shifting). Othe r important contribution of the paper is the comparison between deterministic and computational intelligence techniques to reduce the execution time. The proposed scheduling is solved with a modified particle swarm optimization. Mixed integer non-linear programming is also used for comparison purposes. Full ac power flow calculation is included to allow taking into account the network constraints. A case study with a 33-bus distribution network and 2000 V2G resources is used to illustrate the performance of the proposed method.
Resumo:
The elastic behavior of the demand consumption jointly used with other available resources such as distributed generation (DG) can play a crucial role for the success of smart grids. The intensive use of Distributed Energy Resources (DER) and the technical and contractual constraints result in large-scale non linear optimization problems that require computational intelligence methods to be solved. This paper proposes a Particle Swarm Optimization (PSO) based methodology to support the minimization of the operation costs of a virtual power player that manages the resources in a distribution network and the network itself. Resources include the DER available in the considered time period and the energy that can be bought from external energy suppliers. Network constraints are considered. The proposed approach uses Gaussian mutation of the strategic parameters and contextual self-parameterization of the maximum and minimum particle velocities. The case study considers a real 937 bus distribution network, with 20310 consumers and 548 distributed generators. The obtained solutions are compared with a deterministic approach and with PSO without mutation and Evolutionary PSO, both using self-parameterization.