33 resultados para HBV DNA quantification
Resumo:
Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.
Resumo:
This study focused on the development of a sensitive enzymatic biosensor for the determination of pirimicarb pesticide based on the immobilization of laccase on composite carbon paste electrodes. Multi- walled carbon nanotubes(MWCNTs)paste electrode modified by dispersion of laccase(3%,w/w) within the optimum composite matrix(60:40%,w/w,MWCNTs and paraffin binder)showed the best performance, with excellent electron transfer kinetic and catalytic effects related to the redox process of the substrate4- aminophenol. No metal or anti-interference membrane was added. Based on the inhibition of laccase activity, pirimicarb can be determined in the range 9.90 ×10- 7 to 1.15 ×10- 5 molL 1 using 4- aminophenol as substrate at the optimum pH of 5.0, with acceptable repeatability and reproducibility (relative standard deviations lower than 5%).The limit of detection obtained was 1.8 × 10-7 molL 1 (0.04 mgkg 1 on a fresh weight vegetable basis).The high activity and catalytic properties of the laccase- based biosensor are retained during ca. one month. The optimized electroanalytical protocol coupled to the QuEChERS methodology were applied to tomato and lettuce samples spiked at three levels; recoveries ranging from 91.0±0.1% to 101.0 ± 0.3% were attained. No significant effects in the pirimicarb electro- analysis were observed by the presence of pro-vitamin A, vitamins B1 and C,and glucose in the vegetable extracts. The proposed biosensor- based pesticide residue methodology fulfills all requisites to be used in implementation of food safety programs.
Resumo:
A glutathione-S-transferase (GST)based biosensor was developed to quantify the thiocarbamate herbicide molinate in environmental water.The biosensor construction was based on GST immobilization onto a glassy carbon electrode via aminosilane–glutaraldehyde covalent attachment. The principle supporting the use of this biosensor consists of the GST inhibition process promoted by molinate. Differential pulse voltammetry was used to obtain a calibration curve for molinate concentration, ranging from 0.19 to 7.9 mgL -1 and presenting a detection limit of 0.064 mgL- 1. The developed biosensor is stable,and reusable during 15 days.The GST-based biosensor was successfully applied to quantify molinate in rice paddy field floodwater samples. The results achieved with the developed biosensor were in accordance with those obtained by high performance liquid chromatography. The proposed device is suitable for screening environmental water analysis and, since no sample preparation is required, it can be used in situ and in real-time measurements.
Resumo:
A novel enzymatic biosensor for carbamate pesticides detection was developed through the direct immobilization of Trametes versicolor laccase on graphene doped carbon paste electrode functionalized with Prussianblue films (LACC/PB/GPE). Graphene was prepared by graphite sonication-assisted exfoliation and characterized by transmission electron microscopy and X-ray photoelectron spectro- scopy. The Prussian blue film electrodeposited onto graphene doped carbon paste electrode allowed considerable reduction of the charge transfer resistance and of the capacitance of the device.The combined effects of pH, enzyme concentration and incubation time on biosensor response were optimized using a 23 full-factorial statistical design and response surface methodology. Based on the inhibition of laccase activity and using 4-aminophenol as redox mediator at pH 5.0,LACC/PB/GPE exhibited suitable characteristics in terms of sensitivity, intra-and inter-day repeatability (1.8–3.8% RSD), reproducibility (4.1 and 6.3%RSD),selectivity(13.2% bias at the higher interference: substrate ratios tested),accuracy and stability(ca. twenty days)for quantification of five carbamates widely applied on tomato and potato crops.The attained detection limits ranged between 5.2×10−9 mol L−1(0.002 mg kg−1 w/w for ziram)and 1.0×10−7 mol L−1 (0.022 mg kg−1 w/w for carbofuran).Recovery values for the two tested spiking levels ranged from 90.2±0.1%(carbofuran)to 101.1±0.3% (ziram) for tomato and from 91.0±0.1%(formetanate)to 100.8±0.1%(ziram)for potato samples.The proposed methodology is appropriate to enable testing pesticide levels in food samples to fit with regulations and food inspections.
Resumo:
The electrooxidative behavior of pravastatin (PRV) in aqueous media was studied by square-wave voltammetry at a glassycarbon electrode (GCE) and at a screen-printed carbon electrode (SPCE). Maximum peak current intensities in a pH 5.0 buffer were obtained at +1.3 V vs. AgCl/Ag and +1.0 V vs. Ag for the GCE and SPCE surface respectively. Validation of the developed methodologies revealed good performance characteristics and confirmed their applicability to the quantification of PRV in pharmaceutical products, without significant sample pretreatment. A comparative analysis between the two electrode types showed that SPCEs are preferred as an electrode surface because of their higher sensitivity and the elimination of the need to clean the electrode’s surface for its renewal, which frequently is, if not always, the rate-limiting step in voltammetric analysis.
Resumo:
The oxidative behaviour of fluoxetine was studied at a glassy carbon electrode in various buffer systems and at different pH using cyclic, differential pulse and square wave voltammetry. A new square wave voltammetric method suitable for the quality control of fluoxetine in commercial formulations has been developed using a borate pH 9 buffer solution as supporting electrolyte. Under optimized conditions, a linear response was obtained in the range 10 to 16 μM with a detection limit of 1.0 μM. Validation parameters such as sensitivity, precision and accuracy were evaluated. The proposed method was successfully applied to the determination of fluoxetine in pharmaceutical formulations. The results were statistically compared with those obtained by the reference high-performance liquid chromatographic method. No significant differences were found between the methods.
Resumo:
In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, at both upstream and downstream of the production process, namely: i) Adoption of a new heating system for pultrusion die-tool in the manufacturing process, more effective and with minor heat losses; ii) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent ecoefficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
This work describes the development of an electrochemical enzymatic biosensor for quantification of the pesticide formetanate hydrochloride (FMT). It is based on a gold electrode modified with electrodeposited gold nanoparticles and laccase. The principle behind its development relies on FMT's capacity to inhibit the laccase catalytic reaction that occurs in the presence of phenolic substrates. The optimum values for the relevant experimental variables such as gold nanoparticles electrochemical deposition (at − 0.2 V for 100 s), laccase immobilization (via glutaraldehyde cross-linking), laccase concentration (12.4 mg/mL), substrate selection and concentration (5.83×10−5 M of aminophenol), pH (5.0), buffer (Britton–Robinson), and square-wave voltammetric parameters were determined. The developed biosensor was successfully applied to FMT determination in mango and grapes. The attained limit of detection was 9.5×10−8 ± 9.5×10−10 M (0.02 ± 2.6×10−4 mg/kg on a fresh fruit weight basis). Recoveries for the five tested spiking levels ranged from 95.5 ± 2.9 (grapes) to 108.6 ± 2.5% (mango). The results indicated that the proposed device presents suitable characteristics in terms of sensitivity (20.58 ± 0.49 A/μM), linearity (9.43×10−7 to 1.13×10−5 M), accuracy, repeatability (RSD of 1.4%), reproducibility (RSD of 1.8%) and stability (19 days) for testing of compliance with established maximum residue limits of FMT in fruits and vegetables.
Resumo:
No dia-a-dia, os organismos vivos estão sujeitos a vários tipos de agressões de origem endógena e exógena. A produção endógena exagerada de agentes oxidantes que ocorre nos processos metabólicos dos seres vivos está intimamente associada ao aparecimento e desenvolvimento de várias patologias. Por outro lado, e devido às atividades antropogénicas, muitos agentes oxidantes de origem ambiental e alimentar entram por via exógena no organismo dos seres vivos provocando igualmente danos a nível celular. De modo a protegerem-se dos efeitos pejorativos provocados por estes compostos, os organismos vivos desenvolveram mecanismos complexos de defesa antioxidante. Este trabalho consistiu no estudo eletroquímico do dano oxidativo induzido por agentes oxidantes (PAH (hidrocarbonetos aromáticos policíclicos), H2O2, NO• e HClO) e do efeito protetor, ao dano oxidativo, promovido por antioxidantes no material baseado no ADN recorrendo à utilização de um biossensor de bases púricas, adenina-EPC (elétrodo pasta de carbono) e dA20-EPC, utilizando a voltametria de onda quadrada (VOQ) como técnica de deteção. A aplicação da eletroquímica apresenta várias vantagens para a quantificação da capacidade antioxidante total (CAT) pois, permite a redução da quantidade de reagentes e amostra em análise, elimina a etapa de remoção de cor (a cor é um interferente nos métodos óticos) e não requer equipamentos dispendiosos. Foram seguidas diferentes abordagens para a construção dos biossensores. A primeira consistiu na construção de um adenina-EPC em três etapas: i) condicionamento do EPC, ii) eletrodeposição da adenina no EPC e iii) leitura do sinal eletroquímico. Assim, foram otimizados diversos parâmetros: concentração de adenina (150,0 mg/L), potencial de condicionamento (Ec) (+ 1,80 V), potencial de deposição (Ed) (+ 0,40 V), tempo de condicionamento (tc) (180 s) e tempo de deposição (td) (240 s). Foi aplicado o adenina-EPC no estudo do dano oxidativo provocado por PAH (benzo (g,h,i) perileno) e constatou-se que era necessário transformar o benzo (g,h,i) perileno num radical para se possível observar danos oxidativos induzidos no biossensor. A nova estratégia consistiu na construção de um dA20-EPC, através da adsorção física de uma gota de dA20 na superfície do EPC, com posterior secagem e leitura do sinal eletroquímico. Neste procedimento foi otimizada a concentração de dA20 (100,0 mg/L). O dano oxidativo provocado pelo H2O2, NO• e HClO foi estudado sobre o dA20-EPC e verificou-se que os três agentes oxidantes induziam dano oxidativo no dA20-EPC. Confirmou-se a capacidade do ácido ascórbico (AA) em proteger o dA20-EPC do dano oxidativo induzido por H2O2 e NO•. O biossensor desenvolvido (dA20-EPC) foi aplicado na avaliação da CAT de diferentes amostras reais (café, sumo de laranja e água aromatizada de laranja) usando-se como agentes oxidantes o H2O2 e NO•. Todas as amostras analisadas apresentaram ter capacidade antioxidante. Quando se utilizou o dA20-EPC na presença de H2O2, verificou-se que as amostras de café apresentam valores mais elevados de CAT (1130-1488 mg AAE/L) do que as amostras de bebidas (110 mg AAE/L em água aromatizada e 775 mg AAE/L em sumo). Os valores de CAT obtidos para amostras de sumo e água aromatizada na presença de NO• indicam que a amostra de sumo possui maior teor de CAT (871 mg AAE/L) conforme era esperado, do que a amostra de água aromatizada (172 mg AAE/L). Na presença de HClO, o valor de CAT mais elevado pertence a uma amostra de sumo (513 mg AAE/L) mas, o valor de CAT da amostra de sumo natural é muito mais baixa do que o esperado (17 mg AAE/L). Foram estudados outros antioxidantes para além do AA (ácido cumárico, ácido gálico e ácido cafeico), e constatou-se que cada um deles promove proteção ao dA20-EPC na presença de cada um dos diferentes contaminantes (H2O2, NO• e HClO).
Resumo:
1st ASPIC International Congress
Resumo:
A label-free DNA aptamer-based impedance biosensor for the detection of E. coli outer membrane proteins (OMPs) was developed. Two single stranded DNA sequences were tested as recognition elements and compared. The aptamer capture probes were immobilized, with and without 6-mercapto-1-hexanol (MCH) on a gold electrode. Each step of the modification process was characterized by Faradaic impedance spectroscopy (FIS). A linear relationship between the electron-transfer resistance (Ret) and E. coli OMPs concentration was demonstrated in a dynamic detection range of 1 × 10−7–2 × 10−6 M. Moreover, the aptasensor showed selectivity despite the presence of other possible water contaminates and could be regenerated under low pH condition. The developed biosensor shows great potential to be incorporated in a biochip and used for in situ detection of E. coli OMPs in water samples.
Resumo:
This study addresses the deoxyribonucleic acid (DNA) and proposes a procedure based on the association of statistics, information theory, signal processing, Fourier analysis and fractional calculus for describing fundamental characteristics of the DNA. In a first phase the 24 chromosomes of the Human are evaluated. In a second phase, 10 chromosomes for different species are also processed and the results compared. The results reveal invariance in the description and close resemblances with fractional Brownian motion.
Resumo:
Proceedings of the 12th Conference on 'Dynamical Systems -Theory and Applications'
Resumo:
This work aims to evaluate the feasibility of using image-based cytometry (IBC) in the analysis of algal cell quantification and viability, using Pseudokirchneriella subcapitata as a cell model. Cell concentration was determined by IBC to be in a linear range between 1 × 105 and 8 × 106 cells mL−1. Algal viability was defined on the basis that the intact membrane of viable cells excludes the SYTOX Green (SG) probe. The disruption of membrane integrity represents irreversible damage and consequently results in cell death. Using IBC, we were able to successfully discriminate between live (SG-negative cells) and dead algal cells (heat-treated at 65 °C for 60 min; SG-positive cells). The observed viability of algal populations containing different proportions of killed cells was well correlated (R 2 = 0.994) with the theoretical viability. The validation of the use of this technology was carried out by exposing algal cells of P. subcapitata to a copper stress test for 96 h. IBC allowed us to follow the evolution of cell concentration and the viability of copper-exposed algal populations. This technology overcomes several main drawbacks usually associated with microscopy counting, such as labour-intensive experiments, tedious work and lack of the representativeness of the cell counting. In conclusion, IBC allowed a fast and automated determination of the total number of algal cells and allowed us to analyse viability. This technology can provide a useful tool for a wide variety of fields that utilise microalgae, such as the aquatic toxicology and biotechnology fields.