93 resultados para Distribution network reconfiguration
Resumo:
This paper proposes a PSO based approach to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The statistical failure and repair data of distribution components is the main basis of the proposed methodology that uses a fuzzyprobabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A Modified Discrete PSO optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.
Resumo:
This paper proposes a methodology to increase the probability of delivering power to any load point through the identification of new investments. The methodology uses a fuzzy set approach to model the uncertainty of outage parameters, load and generation. A DC fuzzy multicriteria optimization model considering the Pareto front and based on mixed integer non-linear optimization programming is developed in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power to all customers in the distribution network at the minimum possible cost for the system operator, while minimizing the non supplied energy cost. To illustrate the application of the proposed methodology, the paper includes a case study which considers an 33 bus distribution network.
Resumo:
A methodology to increase the probability of delivering power to any load point through the identification of new investments in distribution network components is proposed in this paper. The method minimizes the investment cost as well as the cost of energy not supplied in the network. A DC optimization model based on mixed integer non-linear programming is developed considering the Pareto front technique in order to identify the adequate investments in distribution networks components which allow increasing the probability of delivering power for any customer in the distribution system at the minimum possible cost for the system operator, while minimizing the energy not supplied cost. Thus, a multi-objective problem is formulated. To illustrate the application of the proposed methodology, the paper includes a case study which considers a 180 bus distribution network
Resumo:
Power systems have been experiencing huge changes mainly due to the substantial increase of distributed generation (DG) and the operation in competitive environments. Virtual Power Players (VPP) can aggregate several players, namely a diversity of energy resources, including distributed generation (DG) based on several technologies, electric storage systems (ESS) and demand response (DR). Energy resources management gains an increasing relevance in this competitive context. This makes the DR use more interesting and flexible, giving place to a wide range of new opportunities. This paper proposes a methodology to support VPPs in the DR programs’ management, considering all the existing energy resources (generation and storage units) and the distribution network. The proposed method is based on locational marginal prices (LMP) values. The evaluation of the impact of using DR specific programs in the LMP values supports the manager decision concerning the DR use. The proposed method has been computationally implemented and its application is illustrated in this paper using a 33-bus network with intensive use of DG.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitiveenvironment of electricity markets impose the use of new approaches in several domains. The networkcost allocation, traditionally used in transmission networks, should be adapted and used in the distribu-tion networks considering the specifications of the connected resources. The main goal is to develop afairer methodology trying to distribute the distribution network use costs to all players which are usingthe network in each period. In this paper, a model considering different type of costs (fixed, losses, andcongestion costs) is proposed comprising the use of a large set of DER, namely distributed generation(DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehi-cles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). Theproposed model includes three distinct phases of operation. The first phase of the model consists in aneconomic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen’s andBialek’s tracing algorithms are used and compared to evaluate the impact of each resource in the net-work. Finally, the MW-mile method is used in the third phase of the proposed model. A distributionnetwork of 33 buses with large penetration of DER is used to illustrate the application of the proposedmodel.
Resumo:
The increasing and intensive integration of distributed energy resources into distribution systems requires adequate methodologies to ensure a secure operation according to the smart grid paradigm. In this context, SCADA (Supervisory Control and Data Acquisition) systems are an essential infrastructure. This paper presents a conceptual design of a communication and resources management scheme based on an intelligent SCADA with a decentralized, flexible, and intelligent approach, adaptive to the context (context awareness). The methodology is used to support the energy resource management considering all the involved costs, power flows, and electricity prices leading to the network reconfiguration. The methodology also addresses the definition of the information access permissions of each player to each resource. The paper includes a 33-bus network used in a case study that considers an intensive use of distributed energy resources in five distinct implemented operation contexts.
Resumo:
In the traditional paradigm, the large power plants supply the reactive power required at a transmission level and the capacitors and transformer tap changer were also used at a distribution level. However, in a near future will be necessary to schedule both active and reactive power at a distribution level, due to the high number of resources connected in distribution levels. This paper proposes a new multi-objective methodology to deal with the optimal resource scheduling considering the distributed generation, electric vehicles and capacitor banks for the joint active and reactive power scheduling. The proposed methodology considers the minimization of the cost (economic perspective) of all distributed resources, and the minimization of the voltage magnitude difference (technical perspective) in all buses. The Pareto front is determined and a fuzzy-based mechanism is applied to present the best compromise solution. The proposed methodology has been tested in the 33-bus distribution network. The case study shows the results of three different scenarios for the economic, technical, and multi-objective perspectives, and the results demonstrated the importance of incorporating the reactive scheduling in the distribution network using the multi-objective perspective to obtain the best compromise solution for the economic and technical perspectives.
Resumo:
The high penetration of distributed energy resources (DER) in distribution networks and the competitive environment of electricity markets impose the use of new approaches in several domains. The network cost allocation, traditionally used in transmission networks, should be adapted and used in the distribution networks considering the specifications of the connected resources. The main goal is to develop a fairer methodology trying to distribute the distribution network use costs to all players which are using the network in each period. In this paper, a model considering different type of costs (fixed, losses, and congestion costs) is proposed comprising the use of a large set of DER, namely distributed generation (DG), demand response (DR) of direct load control type, energy storage systems (ESS), and electric vehicles with capability of discharging energy to the network, which is known as vehicle-to-grid (V2G). The proposed model includes three distinct phases of operation. The first phase of the model consists in an economic dispatch based on an AC optimal power flow (AC-OPF); in the second phase Kirschen's and Bialek's tracing algorithms are used and compared to evaluate the impact of each resource in the network. Finally, the MW-mile method is used in the third phase of the proposed model. A distribution network of 33 buses with large penetration of DER is used to illustrate the application of the proposed model.
Multi-criteria optimisation approach to increase the delivered power in radial distribution networks
Resumo:
This study proposes a new methodology to increase the power delivered to any load point in a radial distribution network, through the identification of new investments in order to improve the repair time. This research work is innovative and consists in proposing a full optimisation model based on mixed-integer non-linear programming considering the Pareto front technique. The goal is to achieve a reduction in repair times of the distribution networks components, while minimising the costs of that reduction as well as non-supplied energy costs. The optimisation model considers the distribution network technical constraints, the substation transformer taps, and it is able to choose the capacitor banks size. A case study based on a 33-bus distribution network is presented in order to illustrate in detail the application of the proposed methodology.
Resumo:
The system grounding method option has a direct influence on the overall performance of the entire medium voltage network as well as on the ground fault current magnitude. For any kind of grounding systems: ungrounded system, solidly and low impedance grounded and resonant grounded, we can find advantages and disadvantages. A thorough study is necessary to choose the most appropriate grounding protection system. The power distribution utilities justify their choices based on economic and technical criteria, according to the specific characteristics of each distribution network. In this paper we present a medium voltage Portuguese substation case study and a study of neutral system with Petersen coil, isolated neutral and impedance grounded.
Resumo:
This paper proposes a wind power forecasting methodology based on two methods: direct wind power forecasting and wind speed forecasting in the first phase followed by wind power forecasting using turbines characteristics and the aforementioned wind speed forecast. The proposed forecasting methodology aims to support the operation in the scope of the intraday resources scheduling model, namely with a time horizon of 5 minutes. This intraday model supports distribution network operators in the short-term scheduling problem, in the smart grid context. A case study using a real database of 12 months recorded from a Portuguese wind power farm was used. The results show that the straightforward methodology can be applied in the intraday model with high wind speed and wind power accuracy. The wind power forecast direct method shows better performance than wind power forecast using turbine characteristics and wind speed forecast obtained in first phase.
Resumo:
The use of distributed energy resources, based on natural intermittent power sources, like wind generation, in power systems imposes the development of new adequate operation management and control methodologies. A short-term Energy Resource Management (ERM) methodology performed in two phases is proposed in this paper. The first one addresses the day-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. The ERM scheduling is a complex optimization problem due to the high quantity of variables and constraints. In this paper the main goal is to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixedinteger non-linear programming approach. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units and 1000 electric vehicles has been implemented in a simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
The reactive power management is an important task in future power systems. The control of reactive power allows the increase of distributed energy resources penetration as well as the optimal operation of distribution networks. Currently, the control of reactive power is only controlled in large power units and in high and very high voltage substations. In this paper a reactive power control in smart grids paradigm is proposed, considering the management of distributed energy resources and of the distribution network by an aggregator namely Virtual Power Player (VPP).
Resumo:
The introduction of new distributed energy resources, based on natural intermittent power sources, in power systems imposes the development of new adequate operation management and control methods. This paper proposes a short-term Energy Resource Management (ERM) methodology performed in two phases. The first one addresses the hour-ahead ERM scheduling and the second one deals with the five-minute ahead ERM scheduling. Both phases consider the day-ahead resource scheduling solution. The ERM scheduling is formulated as an optimization problem that aims to minimize the operation costs from the point of view of a virtual power player that manages the network and the existing resources. The optimization problem is solved by a deterministic mixed-integer non-linear programming approach and by a heuristic approach based on genetic algorithms. A case study considering a distribution network with 33 bus, 66 distributed generation, 32 loads with demand response contracts and 7 storage units has been implemented in a PSCADbased simulator developed in the field of the presented work, in order to validate the proposed short-term ERM methodology considering the dynamic power system behavior.