23 resultados para ANTIGEN LEVEL
Risk Acceptance in the Furniture Sector: Analysis of Acceptance Level and Relevant Influence Factors
Resumo:
Risk acceptance has been broadly discussed in relation to hazardous risk activities and/or technologies. A better understanding of risk acceptance in occupational settings is also important; however, studies on this topic are scarce. It seems important to understand the level of risk that stakeholders consider sufficiently low, how stakeholders form their opinion about risk, and why they adopt a certain attitude toward risk. Accordingly, the aim of this study is to examine risk acceptance in regard to occupational accidents in furniture industries. The safety climate analysis was conducted through the application of the Safety Climate in Wood Industries questionnaire. Judgments about risk acceptance, trust, risk perception, benefit perception, emotions, and moral values were measured. Several models were tested to explain occupational risk acceptance. The results showed that the level of risk acceptance decreased as the risk level increased. High-risk and death scenarios were assessed as unacceptable. Risk perception, emotions, and trust had an important influence on risk acceptance. Safety climate was correlated with risk acceptance and other variables that influence risk acceptance. These results are important for the risk assessment process in terms of defining risk acceptance criteria and strategies to reduce risks.
Resumo:
This work shows that the synthesis of protein plastic antibodies tailored with selected charged monomersaround the binding site enhances protein binding. These charged receptor sites are placed over a neutralpolymeric matrix, thus inducing a suitable orientation the protein reception to its site. This is confirmed bypreparing control materials with neutral monomers and also with non-imprinted template. This concepthas been applied here to Prostate Specific Antigen (PSA), the protein of choice for screening prostate can-cer throughout the population, with serum levels >10 ng/mL pointing out a high probability of associatedcancer.Protein Imprinted Materials with charged binding sites (C/PIM) have been produced by surfaceimprinting over graphene layers to which the protein was first covalently attached. Vinylben-zyl(trimethylammonium chloride) and vinyl benzoate were introduced as charged monomers labellingthe binding site and were allowed to self-organize around the protein. The subsequent polymerizationwas made by radical polymerization of vinylbenzene. Neutral PIM (N/PIM) prepared without orientedcharges and non imprinted materials (NIM) obtained without template were used as controls.These materials were used to develop simple and inexpensive potentiometric sensor for PSA. Theywere included as ionophores in plasticized PVC membranes, and tested over electrodes of solid or liq-uid conductive contacts, made of conductive carbon over a syringe or of inner reference solution overmicropipette tips. The electrodes with charged monomers showed a more stable and sensitive response,with an average slope of -44.2 mV/decade and a detection limit of 5.8 × 10−11mol/L (2 ng/mL). The cor-responding non-imprinted sensors showed lower sensitivity, with average slopes of -24.8 mV/decade.The best sensors were successfully applied to the analysis of serum, with recoveries ranging from 96.9to 106.1% and relative errors of 6.8%.
Resumo:
Prostate Specific Antigen (PSA) is the biomarker of choice for screening prostate cancer throughout the population, with PSA values above 10 ng/mL pointing out a high probability of associated cancer1. According to the most recent World Health Organization (WHO) data, prostate cancer is the commonest form of cancer in men in Europe2. Early detection of prostate cancer is thus very important and is currently made by screening PSA in men over 45 years old, combined with other alterations in serum and urine parameters. PSA is a glycoprotein with a molecular mass of approximately 32 kDa consisting of one polypeptide chain, which is produced by the secretory epithelium of human prostate. Currently, the standard methods available for PSA screening are immunoassays like Enzyme-Linked Immunoabsorbent Assay (ELISA). These methods are highly sensitive and specific for the detection of PSA, but they require expensive laboratory facilities and high qualify personal resources. Other highly sensitive and specific methods for the detection of PSA have also become available and are in its majority immunobiosensors1,3-5, relying on antibodies. Less expensive methods producing quicker responses are thus needed, which may be achieved by synthesizing artificial antibodies by means of molecular imprinting techniques. These should also be coupled to simple and low cost devices, such as those of the potentiometric kind, one approach that has been proven successful6. Potentiometric sensors offer the advantage of selectivity and portability for use in point-of-care and have been widely recognized as potential analytical tools in this field. The inherent method is simple, precise, accurate and inexpensive regarding reagent consumption and equipment involved. Thus, this work proposes a new plastic antibody for PSA, designed over the surface of graphene layers extracted from graphite. Charged monomers were used to enable an oriented tailoring of the PSA rebinding sites. Uncharged monomers were used as control. These materials were used as ionophores in conventional solid-contact graphite electrodes. The obtained results showed that the imprinted materials displayed a selective response to PSA. The electrodes with charged monomers showed a more stable and sensitive response, with an average slope of -44.2 mV/decade and a detection limit of 5.8X10-11 mol/L (2 ng/mL). The corresponding non-imprinted sensors showed smaller sensitivity, with average slopes of -24.8 mV/decade. The best sensors were successfully applied to the analysis of serum samples, with percentage recoveries of 106.5% and relatives errors of 6.5%.
Resumo:
4th International Conference on Future Generation Communication Technologies (FGCT 2015), Luton, United Kingdom.
Resumo:
This work presents the development of a low cost sensor device for the diagnosis of breast cancer in point-of-care, made with new synthetic biomimetic materials inside plasticized poly(vinyl chloride), PVC, membranes, for subsequent potentiometric detection. This concept was applied to target a conventional biomarker in breast cancer: Breast Cancer Antigen (CA15-3). The new biomimetic material was obtained by molecularly-imprinted technology. In this, a plastic antibody was obtained by polymerizing around the biomarker that acted as an obstacle to the growth of the polymeric matrix. The imprinted polymer was specifically synthetized by electropolymerization on an FTO conductive glass, by using cyclic voltammetry, including 40 cycles within -0.2 and 1.0 V. The reaction used for the polymerization included monomer (pyrrol, 5.0×10-3 mol/L) and protein (CA15-3, 100U/mL), all prepared in phosphate buffer saline (PBS), with a pH of 7.2 and 1% of ethylene glycol. The biomarker was removed from the imprinted sites by proteolytic action of proteinase K. The biomimetic material was employed in the construction of potentiometric sensors and tested with regard to its affinity and selectivity for binding CA15-3, by checking the analytical performance of the obtained electrodes. For this purpose, the biomimetic material was dispersed in plasticized PVC membranes, including or not a lipophilic ionic additive, and applied on a solid conductive support of graphite. The analytical behaviour was evaluated in buffer and in synthetic serum, with regard to linear range, limit of detection, repeatability, and reproducibility. This antibody-like material was tested in synthetic serum, and good results were obtained. The best devices were able to detect 5 times less CA15-3 than that required in clinical use. Selectivity assays were also performed, showing that the various serum components did not interfere with this biomarker. Overall, the potentiometric-based methods showed several advantages compared to other methods reported in the literature. The analytical process was simple, providing fast responses for a reduced amount of analyte, with low cost and feasible miniaturization. It also allowed the detection of a wide range of concentrations, diminishing the required efforts in previous sample pre-treating stages.
Resumo:
In the traditional paradigm, the large power plants supply the reactive power required at a transmission level and the capacitors and transformer tap changer were also used at a distribution level. However, in a near future will be necessary to schedule both active and reactive power at a distribution level, due to the high number of resources connected in distribution levels. This paper proposes a new multi-objective methodology to deal with the optimal resource scheduling considering the distributed generation, electric vehicles and capacitor banks for the joint active and reactive power scheduling. The proposed methodology considers the minimization of the cost (economic perspective) of all distributed resources, and the minimization of the voltage magnitude difference (technical perspective) in all buses. The Pareto front is determined and a fuzzy-based mechanism is applied to present the best compromise solution. The proposed methodology has been tested in the 33-bus distribution network. The case study shows the results of three different scenarios for the economic, technical, and multi-objective perspectives, and the results demonstrated the importance of incorporating the reactive scheduling in the distribution network using the multi-objective perspective to obtain the best compromise solution for the economic and technical perspectives.
Resumo:
This paper addresses the challenging task of computing multiple roots of a system of nonlinear equations. A repulsion algorithm that invokes the Nelder-Mead (N-M) local search method and uses a penalty-type merit function based on the error function, known as 'erf', is presented. In the N-M algorithm context, different strategies are proposed to enhance the quality of the solutions and improve the overall efficiency. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm. The main goal of this paper is to use a two-level factorial design of experiments to analyze the statistical significance of the observed differences in selected performance criteria produced when testing different strategies in the N-M based repulsion algorithm.