211 resultados para Instalações
Resumo:
Na sociedade atual, a preocupação com o ambiente, por um lado, e com o conforto e a segurança, por outro, faz com que a sustentabilidade energética se assuma como uma forma de intervenção adequada às exigências de qualidade de vida e à eficiência no âmbito da economia. Nesta conformidade, é incontornável a mais-valia do Smart Panel, um quadro elétrico inteligente criado pela Schneider-Electric com vista à consecução daqueles desideratos. Iremos abordar, neste artigo, a gama de produtos que perfazem esta tecnologia, fazendo uma breve descrição de cada um deles, expondo de seguida um exemplo de aplicação desta tecnologia. Numa fase posterior apresentaremos as vantagens do Smart Panel face à tecnologia tradicional (até hoje a mais comum) no que respeita ao controlo de um quadro elétrico, Sistema de Gestão Técnica Centralizada.
Resumo:
A tese que se vai apresentar é relativa a um levantamento energético numa empresa de serviços. Colorstar, que se dedica à comercialização e distribuição de produtos químicos, corantes e pigmentos para as indústrias Têxtil, Plásticos e Tintas e que possui nas suas instalações um laboratório para prestação de serviços na área de tinturaria e acabamentos têxteis, estando por isso frequentemente aberta ao contacto com o exterior. O objectivo dessa avaliação energética é permitir à empresa conhecer o seu posicionamento enquanto consumidor de energia, definindo o seu consumo específico de energia e a sua intensidade carbónica e partindo desse conhecimento, poder estabelecer metas relativamente à eficiência do consumo energético da Colorstar, indicando algumas ferramentas que permitam uma racionalização do consumo de energia e consequente poupança na fatura energética. Pretende-se também avaliar a possibilidade de autossustentabilidade energética da empresa e deste modo cumprir a sua política da Qualidade que tem como objectivos a melhoria contínua e a sustentabilidade. Após um primeiro levantamento e análise das faturas de eletricidade dos últimos 2 anos, conclui-se que o consumo da empresa foi de 7,85 tep/ano e de 7,27 tep/ano em 2011. Estes valores de consumo tornam a Colorstar numa empresa não consumidora intensiva de energia (CIE). A área coberta total do edifício onde se situa a empresa é de 503,60 m2. Por estes motivos, o trabalho a ser realizado não será tão exaustivo como o prevê a Legislação no caso de ser uma empresa CIE mas, irá dar especial incidência no levantamento a efetuar ao sector do Laboratório, pois, é lá que se acredita estarem a maior parte dos equipamentos consumidores de eletricidade da empresa e não tem monotorização individual desse consumo. Além disso é também o único sector onde a produção pode ser monitorizada. No presente trabalho foi efetuada a apresentação e caracterização de todo o equipamento com consumo de água e o levantamento da produção na empresa. Em consequência dos resultados desse levantamento foram ainda efetuadas medições no cilindro o que permitiu realizar a desagregação dos consumos de energia na Colorstar e mo sector do Laboratório. Com base nos resultados obtidos conclui-se que o Laboratório é responsável por 34% dos consumos totais de eletricidade na Colorstar sendo assim o maior consumidor da empresa. Segue-se a Climatização com 20%, depois a informática com 18%, os Outros equipamentos com 14% (aqui haverá também uma parcela devido à climatização uma vez que não foi possível calcular o consumo dos aparelhos de Ar Condicionado) e finalmente a Iluminação com um peso de 11% e a Kitchenette (cozinha) com a menor parcela, representa apenas 3% do consumo total da eletricidade na Colorstar. Efetuado também a desagregação dos consumos do Laboratório, concluiu-se que o termoacumulador (cilindro) é o maior consumidor de eletricidade do laboratório com 21% do total, seguindo-se as Máquinas de tingir (19%), Estufas (14%), Máquina de lavar roupa (12%), Placas de Fogão (10%), a Râmula e o Sistema de Exaustão ambos com 6% do consumo total, o Linitest com 5%, o desumidificador com 4%, a Máquina da loiça com 2%, o Espectrofotómetro com 1% e finalmente a Bomba do circuito de Reciclagem da água de arrefecimento das máquinas de tingir com pouco mais que 0%. Em consequência dos resultados do trabalho efetuado, apresentaram-se 3 propostas de melhoria com sugestões para trabalhos futuros.
Resumo:
Cada vez mais a indústria tem vindo a sofrer algumas mudanças no seu processo produtivo. Hoje, mais que nunca, é preciso garantir que as instalações produtivas sejam as mais eficientes possíveis, procurando a racionalização da energia com um decrescimento dos custos. Deste modo o objectivo desta dissertação é o diagnóstico energético na fábrica de pneus e sugestões de melhoria na empresa CNB/CAMAC. A realização de um diagnóstico energético, para a detecção de desperdícios de energia tem sido amplamente utilizada. A optimização irá prospectar potenciais de mudanças e aplicação de tecnologias de eficiência energética. Pretende-se deste modo travar o consumo energético sem que seja afectada a produção, já que a empresa é considerada consumidora intensiva de energia. Na empresa CNB/CAMAC há consumo de fuelóleo, gasóleo, vapor e energia eléctrica, sendo o vapor a forma de energia mais consumida (36,1%) seguido da energia eléctrica (33,8%), fuelóleo (29,9) e gasóleo (0,3%). O levantamento energético permitiu estudar a influência de algumas variáveis, nos consumos anuais da energia, e assim apresentar propostas de melhoria. Uma das propostas analisadas foi a possibilidade de efectuar um isolamento térmico a algumas válvulas no equipamento de produção e distribuição de vapor. Este isolamento conduziria a uma poupança de 33.540 kWh/ano. Também se propôs o isolamento dos tubos de transporte de vapor no sector da vulcanização o que geraria uma poupança de 549.826 kWh/ano. Sugere-se a implementação de um economizador na caldeira nº1 uma vez que a temperatura média dos gases de chaminé se situa á volta dos 311ºC. Uma vez que existe a pré instalação de um sistema de cogeração, sugere-se que este seja finalizado. Propôs-se a implementação de balastros electrónicos, que conduziria a uma diminuição em energia eléctrica de 33.5877 kWh/ano. Também se propõe a eliminação das fugas de ar na rede de distribuição do ar comprimido poupando assim 12,96kW/h.
Resumo:
O presente trabalho enquadra-se na área das redes de computadores, fazendo referência aos protocolos e ao conjunto de equipamentos e softwares necessários para a administração, controlo e monitorização desse tipo de infra-estruturas. Para a gestão de uma rede de dados, é essencial dispor de conhecimentos e documentação de nível técnico para representar da forma mais fiel possível a configuração da rede, seguindo passo a passo a interligação entre equipamentos existentes e oferecendo assim uma visão o mais fidedigna possível das instalações. O protocolo SNMP é utilizado em larga escala sendo praticamente um standard para a administração de redes baseadas na tecnologia TCP/IP. Este protocolo define a comunicação entre um administrador e um agente, estabelecendo o formato e o significado das mensagens trocadas entre ambos. Tem a capacidade de suportar produtos de diferentes fabricantes, permitindo ao administrador manter uma base de dados com informações relevantes da monitorização de vários equipamentos, que pode ser consultada e analisada por softwares NMS concebidos especialmente para a gestão de redes de computadores. O trabalho apresentado nesta dissertação teve como objectivo utilizar uma ferramenta NMS, para fazer a monitorização e a gestão da infra-estrutura de comunicações de forma que permitisse conhecer em tempo real o estado dos elementos de rede, ajudar no diagnóstico de possíveis problemas, instalados pela Nonius nos diversos navios da frota Douro Azul. O software NMS escolhido utiliza as potencialidades do protocolo SNMP para adquirir dados de monitorização de equipamentos de rede presentes na rede, bem como monitorizar redes remotas.
Resumo:
O crescente aumento do consumo energético das sociedades desenvolvidas e emergentes, motivado pelo progresso económico e social, tem induzido a procura de alternativas focalizadas nas energias renováveis, que possam contribuir para assegurar o fornecimento de energia sem agravar o consumo de combustíveis fósseis e a emissão de gases com efeito de estufa. Nesse sentido, a produção de energia eléctrica a partir do gás metano resultante da estabilização anaeróbia de efluentes tem vindo a ser estudada e praticada desde finais do século XIX, tendo assumido maior expressão a partir dos anos 70 do século XX, na sequência das primeiras crises petrolíferas. As instalações agropecuárias reúnem dois fatores chave para o sucesso do aproveitamento energético do biogás produzido no tratamento dos efluentes: por um lado, produzem matéria-prima com potencial energético – dejeto animal com um potencial enorme de criação de biogás quando procedido de tratamento anaeróbio - e, por outro, necessitam de energia eléctrica para o funcionamento dos equipamentos electromecânicos e de calor para a manutenção das instalações. A valorização energética do biogás produzido na estabilização anaeróbia dos efluentes agro-pecuários, para além de permitir obter um retorno financeiro, que contribui para o equilíbrio dos custos de investimento e de exploração, contribui igualmente para a redução das emissões de gases com efeito de estufa, como o dióxido de carbono e o metano, e para a segurança de abastecimento energético à instalação, na medida em que assegura a alimentação de energia eléctrica em caso de falha no fornecimento pela rede nacional. A presente dissertação apresenta um contributo para estudos a desenvolver por proprietários de agropecuárias, cooperativas regionais do setor da agropecuária, empresas de projecto e estudantes de Engenharia, constituído por uma compilação da informação mais relevante associada à estabilização anaeróbia de efluentes e à valorização energética do biogás produzido. Com base em informação referente ao número real de animais existentes em Portugal, este trabalho pretende fazer ver a essas entidades que o aproveitamento energético do biogás é viável e útil para o país. Com a criação de uma aplicação informática de análise económica de investimento, provar que o investimento em pequenas propriedades, com apenas 80 cabeças normais, pode obter um retorno financeiro razoável, com um prazo de recuperação do investimento bastante baixo, aproveitando um recurso que caso contrário será desperdiçado e poluirá o ambiente.
Resumo:
Esta dissertação foi realizada em colaboração com o grupo empresarial Monteiro, Ribas e teve como principais objetivos efetuar uma avaliação das melhores técnicas disponíveis relativas à refrigeração industrial e às emissões resultantes da armazenagem. O primeiro objetivo teve como alvo todas as instalações da Monteiro, Ribas enquanto que o segundo objetivo se debruçou sobre Monteiro, Ribas, Embalagens Flexíveis, S.A.. Para cumprir estes objetivos, inicialmente efetuou-se um levantamento das melhores técnicas disponíveis apresentadas nos respetivos documentos de referência. Em seguida selecionaram-se as técnicas que se adequavam às condições e às instalações em estudo e procedeu-se a uma avaliação de forma a verificar o grau de implementação das medidas sugeridas no BREF (Best Available Techniques Reference Document). Relativamente aos sistemas de refrigeração industrial verificou-se que estão implementadas quase todas as medidas referenciadas no respetivo documento de referência. Isto prende-se com o facto dos sistemas de refrigeração existentes no complexo industrial Monteiro, Ribas serem relativamente recentes. Foram implementados no ano de 2012, e são caracterizados por apresentarem uma conceção moderna com elevada eficiência. No que diz respeito à armazenagem de produtos químicos perigosos, a instalação em estudo, apresenta algumas inconformidades, uma vez que a maioria das técnicas mencionadas no BREF não se encontram implementadas, pelo que foi necessário efetuar uma avaliação de riscos ambientais, com recurso à metodologia proposta pela Norma Espanhola UNE 150008:2008 – Análise e Avaliação do Risco Ambiental. Para isso procedeu-se então à formulação de vários cenários de riscos e à quantificação de riscos para à Monteiro, Ribas Embalagens Flexíveis S.A., tendo-se apurado que os riscos estavam avaliados como moderados a altos. Por fim foram sugeridas algumas medidas de prevenção e de minimização do risco que a instalação deve aplicar, como por exemplo, o parque de resíduos perigosos deve ser equipado com kits de contenção de derrames (material absorvente), procedimentos a realizar em caso de emergência, fichas de dados de segurança e o extintor deve ser colocado num local de fácil visualização. No transporte de resíduos perigosos, para o respetivo parque, é aconselhável utilizar bacias de contenção de derrames portáteis e kits de contenção de derrames. Relativamente ao armazém de produtos químicos perigosos é recomendado que se proceda a sua reformulação tendo em conta as MTD apresentadas no subcapítulo 5.2.3 desta dissertação.
Resumo:
As instalações de ar comprimido são uma constante em quase todo o tipo de indústria, já que o ar comprimido assume cada vez mais importância como fonte de energia para a movimentação de dispositivos com cargas moderadas ou médias. O uso cada vez mais frequente da pneumática por via da automação de sistemas e processos de fabrico, é outro fator que tem incrementado fortemente o uso de instalações de ar comprimido. A utilização de ar comprimido tem subjacente um ou mais compressores, responsáveis por captar o ar e criar as condições necessárias de pressão na rede que vai abastecer uma qualquer instalação industrial, ou mesmo comercial, como no caso dos serviços de reparação automóvel, entre outras. Desta forma, cria-se uma forte dependência em torno desta fonte de energia, sendo a avaria do compressor um fator extremamente limitativo do processo produtivo ou dos serviços a prestar. As empresas fabricantes de compressores, cientes deste facto, têm primado pela fiabilidade. No entanto, os utilizadores nem sempre criam as condições ideais para o funcionamento desses compressores, conduzindo a problemas de funcionamento. Neste trabalho pretendeu-se elaborar um estudo que permitisse identificar quais as causas que estão por detrás das avarias mais frequentes de alguns dos modelos mais vendidos pela Ingersoll-Rand no nosso país, através da Comingersoll, analisando as mesmas e tentando encontrar soluções que evitassem essas avarias. O estudo permitiu dissecar as avarias registadas em cinco diferentes modelos nos últimos anos, identificar possíveis causas, perceber a frequência com que ocorrem e sugerir melhorias que pudessem minimizar a ocorrência dessas mesmas avarias.
Resumo:
A preocupação com os consumos energéticos é um assunto do qual se tem vindo cada vez mais a ter atenção no sentido de que sejam feitas reduções para que se consiga manter a sustentabilidade do planeta. As indústrias agroalimentares são um dos setores mais importantes em Portugal, sendo que os sistemas de refrigeração são os seus principais consumidores de energia elétrica, ocupando a maior parte da fatia do consumo da instalação. A identificação de oportunidades de racionalização dos consumos de energia toma assim especial importância, tanto na utilização de tecnologias mais eficientes como em medidas de boas práticas, ou seja como são utilizados os serviços. Neste âmbito surge o presente trabalho que tem como objetivo principal estudar duas instalações do mesmo setor e de escalas semelhantes de forma a identificar as diferenças entre elas e de como as tecnologias e os hábitos de utilização de cada uma influenciam nos consumos de energia. Foram estudados os sistemas de refrigeração e os seus principais constituintes, bem como as melhorias passiveis de implementar para que conduzissem a uma redução dos consumos energéticos. Assim, foi desenvolvida uma metodologia de auditoria orientada para os sistemas de refrigeração, em que foi aplicada aquando das auditorias às duas instalações. Após toda a recolha da informação acerca das instalações em estudo, fez se a sua análise individual e a comparação entre ambas, daqui foram obtidos os resultados.
Resumo:
Os Sistemas de Gestão Técnica Centralizada (SGTC) assumem-se como essenciais nos grandes edifícios, já que permitem monitorizar, controlar, comandar e gerir, de forma facilitada, integrada e otimizada, as várias instalações existentes no edifício. O estado da arte de um SGTC baseia-se numa arquitetura distribuída, com recurso a Quadros de Gestão Técnica (QGT) que incluem Automation Servers - equipamentos nativos nos protocolos de comunicação mais comummente utilizados neste âmbito, incorporadores de funcionalidades e programações pré-definidas, e que ficarão responsáveis por integrar na sua área de influência, um conjunto de pontos de SGTC, definidos em projeto. Numa nova filosofia de instalação, integração e comunicação facilitada entre dispositivos que nos quadros elétricos geram dados relevantes para o utilizador e desencadeiam ações úteis na gestão de uma instalação, surge o novo conceito no mercado de Smart Panels, da Schneider Electric. Este sistema baseia-se numa ampla e diversa gama de possibilidades de medição e monitorização energética e da própria aparelhagem, com um sistema de comunicação com o sistema de gestão e controlo da instalação integrado no próprio quadro, dispensando assim a necessidade de um sistema externo (QGT), de recolha, comunicação e processamento de informação. Após o estudo descritivo teórico dos vários tópicos, questões e considerações relacionadas com os SGTC, os Smart Panels e a sua integração, o projeto e estudo comparativo do SGTC sem e com a integração de Smart Panels num grande centro comercial, permitiu concluir que a integração de Smart Panels num SGTC pode conferir vantagens no que diz respeito à implificação do projeto, da instalação, do comissionamento, programação, e da própria exploração da instalação elétrica, traduzindo-se numa redução dos custos normalmente elevados inerentes à mão de obra associada a todos estes processos.
Resumo:
Em 2006, a IEA (Agência Internacional de Energia), publicou alguns estudos de consumos mundiais de energia. Naquela altura, apontava na fabricação de produtos, um consumo mundial de energia elétrica, de origem fóssil de cerca 86,16 EJ/ano (86,16×018 J) e um consumo de energia nos sistemas de vapor de 32,75 EJ/ano. Evidenciou também nesses estudos que o potencial de poupança de energia nos sistemas de vapor era de 3,27 EJ/ano. Ou seja, quase tanto como a energia consumida nos sistemas de vapor da U.E. Não se encontraram números relativamente a Portugal, mas comparativamente com outros Países publicitados com alguma similaridade, o consumo de energia em vapor rondará 0,2 EJ/ano e por conseguinte um potencial de poupança de cerca 0,02 EJ/ano, ou 5,6 × 106 MWh/ano ou uma potência de 646 MW, mais do que a potência de cinco barragens Crestuma/Lever! Trata-se efetivamente de muita energia; interessa por isso perceber o onde e o porquê deste desperdício. De um modo muito modesto, pretende-se com este trabalho dar algum contributo neste sentido. Procurou-se evidenciar as possibilidades reais de os utilizadores de vapor de água na indústria reduzirem os consumos de energia associados à sua produção. Não estão em causa as diferentes formas de energia para a geração de vapor, sejam de origem fóssil ou renovável; interessou neste trabalho estudar o modo de como é manuseado o vapor na sua função de transporte de energia térmica, e de como este poderá ser melhorado na sua eficiência de cedência de calor, idealmente com menor consumo de energia. Com efeito, de que servirá se se optou por substituir o tipo de queima para uma mais sustentável se a jusante se continuarem a verificarem desperdícios, descarga exagerada nas purgas das caldeiras com perda de calor associada, emissões permanentes de vapor para a atmosfera em tanques de condensado, perdas por válvulas nos vedantes, purgadores avariados abertos, pressão de vapor exageradamente alta atendendo às temperaturas necessárias, “layouts” do sistema de distribuição mal desenhados, inexistência de registos de produção e consumos de vapor, etc. A base de organização deste estudo foi o ciclo de vapor: produção, distribuição, consumo e recuperação de condensado. Pareceu importante incluir também o tratamento de água, atendendo às implicações na transferência de calor das superfícies com incrustações. Na produção de vapor, verifica-se que os maiores problemas de perda de energia têm a ver com a falta de controlo, no excesso de ar e purgas das caldeiras em exagero. Na distribuição de vapor aborda-se o dimensionamento das tubagens, necessidade de purgas a v montante das válvulas de controlo, a redução de pressão com válvulas redutoras tradicionais; será de destacar a experiência americana no uso de micro turbinas para a redução de pressão com produção simultânea de eletricidade. Em Portugal não se conhecem instalações com esta opção. Fabricantes da República Checa e Áustria, têm tido sucesso em algumas dezenas de instalações de redução de pressão em diversos países europeus (UK, Alemanha, R. Checa, França, etc.). Para determinação de consumos de vapor, para projeto ou mesmo para estimativa em máquinas existentes, disponibiliza-se uma série de equações para os casos mais comuns. Dá-se especial relevo ao problema que se verifica numa grande percentagem de permutadores de calor, que é a estagnação de condensado - “stalled conditions”. Tenta-se também evidenciar as vantagens da recuperação de vapor de flash (infelizmente de pouca tradição em Portugal), e a aplicação de termocompressores. Finalmente aborda-se o benchmarking e monitorização, quer dos custos de vapor quer dos consumos específicos dos produtos. Esta abordagem é algo ligeira, por manifesta falta de estudos publicados. Como trabalhos práticos, foram efetuados levantamentos a instalações de vapor em diversos sectores de atividades; 1. ISEP - Laboratório de Química. Porto, 2. Prio Energy - Fábrica de Biocombustíveis. Porto de Aveiro. 3. Inapal Plásticos. Componentes de Automóvel. Leça do Balio, 4. Malhas Sonix. Tinturaria Têxtil. Barcelos, 5. Uma instalação de cartão canelado e uma instalação de alimentos derivados de soja. Também se inclui um estudo comparativo de custos de vapor usado nos hospitais: quando produzido por geradores de vapor com queima de combustível e quando é produzido por pequenos geradores elétricos. Os resultados estão resumidos em tabelas e conclui-se que se o potencial de poupança se aproxima do referido no início deste trabalho.
Resumo:
Muitas instalações municipais são alvo de manutenção permanente, devido ao uso de produtos químicos que provocam a corrosão e degradação dos mais diversos materiais. Esta degradação acarreta custos elevados para os municípios e privação de uso de algumas instalações devido a manutenção curativa ou preventiva. Um estudo adequado do efeito dos produtos utilizados, poderia conduzir à utilização de materiais mais nobres, que aumentasse significativamente o tempo de vida dos produtos mais atacados pela degradação por corrosão, através de estudos que permitissem avaliar a relação custo-benefício e, caso esta fosse favorável, proceder à substituição de determinados componentes em materiais relativamente fracos, por outros com uma maior capacidade para resistir aos ataques produzidos pelo meio em que estão inseridos. Este estudo foi efectuado com vista a estudar a degradação de determinados materiais expostos essencialmente à acção do Cloro em instalações municipais, permitindo assim seleccionar novos materiais que permitissem uma vida útil dos componentes mais alargada, estudando convenientemente a relação custo-benefício. Foi possível observar que a introdução de alguns materiais mais nobres, poderá reduzir drasticamente as operações de manutenção, diminuindo os custos e reduzindo também o tempo de indisponibilidade dos equipamentos municipais.
Resumo:
Intitulada SIAWISE AUDIT, esta dissertação pretende apresentar o desenvolvimento de uma aplicação informática com o mesmo nome, e o conceito que esta defende e de que forma pode simplificar e reduzir o trabalho dos seus utilizadores. O SIAWISE AUDIT surge da necessidade de modernizar, informatizar e acelerar o processo de auditoria de conformidade legal prestado pela empresa acolhedora e mentora do projeto – a SIA. Sucintamente, o projeto visava a implementação de uma aplicação desenvolvida inicialmente tendo como alvo o Windows 8.1 mas que atualmente já é compatível com o novo Windows 10. A solução tem como principal característica o funcionamento em modo offline, essencial ao trabalho no terreno e em instalações de recursos frequentemente limitados no que refere à utilização de Internet. A aplicação tem como fonte de dados o software de gestão de legislação da SIA – o SIAWISE – que contém todos os dados relativos à legislação aplicável a cada cliente. Por se tratar de uma ferramenta exclusivamente para uso interno da organização, a interação e comunicações são sempre efetuadas através do BackOffice – o SIAWISE MASTER – este permite a importação e exportação de dados referentes à auditoria para o SIAWISE AUDIT. O resultado do processo de auditoria com recurso ao SIAWISE AUDIT tem como principal output a geração automática de um relatório de auditoria pronto a entregar ao cliente.
Resumo:
Na sociedade atual, a preocupação com o ambiente, por um lado, e com o conforto e a segurança, por outro, faz com que a sustentabilidade energética se assuma como uma forma de intervenção adequada às exigências de qualidade de vida e à eficiência no âmbito da economia. Nesta conformidade, é incontornável a mais-valia do Smart Panel, um quadro elétrico inteligente criado com vista à consecução daqueles desideratos, o que motivou o tema do presente trabalho. Assim, pretende-se demonstrar as potencialidades do Smart Panel, um novo conceito de quadro elétrico que visa a otimização da sua funcionalidade na gestão dinâmica e pragmática das instalações elétricas, nomeadamente no que respeita ao controlo, monitorização e atuação sobre os dispositivos, quer in loco quer, sobretudo, à distância. Para a consecução deste objetivo, concorrem outros que o potenciam, designadamente a compreensão do funcionamento do quadro elétrico (QE) tradicional, a comparação deste com o Smart Panel e a demonstração das vantagens da utilização desta nova tecnologia. A grande finalidade do trabalho desenvolvido é, por um lado, colocar a formação académica ao serviço de um bom desempenho profissional futuro, por outro ir ao encontro da tendência tecnológica inerente às necessidades que o homem, hoje, tem de controlar. Deste modo, num primeiro momento, é feita uma abordagem geral ao quadro eléctrico tradicional a fim de ser compreendido o seu funcionamento, aplicações e potencialidades. Para tanto, a explanação inclui a apresentação de conceitos teóricos subjacentes à conceção, produção e montagem do QE. São explicitados os diversos componentes que o integram e funções que desempenham, bem como as interações que estabelecem entre si e os normativos a que devem obedecer, para conformidade. Houve a preocupação de incluir imagens coadjuvantes das explicações, descrições e procedimentos técnicos. No terceiro capítulo é abordada a tecnologia Smart Panel, introduzindo o conceito e objetivos que lhe subjazem. Explicita-se o modo de funcionamento deste sistema que agrupa proteção, supervisão, controlo, armazenamento e manutenção preventiva, e demonstra-se de que forma a capacidade de leitura de dados, de comunicação e de comando do quadro elétrico à distância se afigura uma revolução tecnológica facilitadora do cumprimento das necessidades de segurança, conforto e economia da vida moderna. Os capítulos quarto, quinto e sexto versam uma componente prática do trabalho. No capítulo quarto é explanado um suporte formativo e posterior demonstração do kit de ensaio, que servirá de apoio à apresentação da tecnologia Smart Panel aos clientes. Além deste suporte de formação, no quinto capítulo é elaborada uma lista de procedimentos de verificação a serem executados aos componentes de comunicação que integram o Smart Panel, para fornecimento ao quadrista. Por fim, no sexto capítulo incluem-se dois casos de estudo: o estudo A centra-se na aplicação da tecnologia Smart Panel ao projeto de um QE tradicional, que implica fazer o levantamento de toda a aparelhagem existente e, de seguida, proceder à transposição para a tecnologia Smart Panel por forma a cumprir os requisitos estabelecidos pelo cliente. O estudo de caso B consiste na elaboração de um projeto de um quadro eléctrico com a tecnologia Smart Panel em função de determinados requisitos e necessidades do cliente, por forma a garantir as funções desejadas.
Resumo:
Neste projeto pretende-se utilizar uma fonte energética renovável (nomeadamente a biomassa), no âmbito da produção de água quente para aquecimento central das instalações do Instituto Superior de Engenharia do Porto (ISEP). O objetivo principal remete para a avaliação técnico-económica da substituição das quinze caldeiras existentes, alimentadas a gás natural, por seis caldeiras alimentadas a biomassa, nomeadamente a pellets. Desta forma, permite-se apostar na biomassa como uma alternativa para reduzir a dependência dos combustíveis fósseis. Neste trabalho apresenta-se uma comparação realista do sistema de aquecimento existente face ao novo a implementar, alimentado por um combustível renovável utilizando caldeiras a pellets de 85% de rendimento. Para realizar esta comparação, usou-se as faturas energéticas de gás natural do ISEP, o custo da quantidade equivalente necessária de pellets, os custos de manutenção dos dois tipos de caldeiras e, os custos do consumo de energia elétrica por parte de ambas as caldeiras. Com este estudo, estimou-se uma poupança anual de 84.100,76 €/ano. Determinaram-se experimentalmente, em laboratório, os parâmetros essenciais de uma amostra de pellets, que foram usados para calcular as necessidades energéticas em biomassa no ISEP, bem como a produção de cinzas gerada por parte das caldeiras. Foi proposto um destino ambientalmente adequado para os 788,5 kg/ano de cinzas obtidas – a utilização na compostagem, após tratamento e aprovação de ensaios ecotoxicológicos realizados pela empresa que fará a sua recolha. As caldeiras a pellets terão um consumo mínimo teórico de 16,47 kgpellets/h, consumindo previsivelmente 197,13 tpellets/ano. Para este efeito, serão usadas caldeiras Quioto de 150 kW da marca Zantia. Para comparar distintas possibilidades de investimento para o projeto, avaliaram-se dois cenários: um foi escolhido de forma a cobrir o somatório da potência instalada das caldeiras atuais e o outro de forma a responder aos consumos energéticos em aquecimento atuais. Além disso, avaliaram-se cenários de financiamento do investimento distintos: um dos cenários corresponde ao pagamento do investimento total do projeto no momento da aquisição das caldeiras, enquanto o outro cenário, mais provável de ser escolhido, refere-se ao pedido de um empréstimo ao banco, no valor de 75% do investimento total. Para o cenário mais provável de investimento, obteve-se um VAL de 291.364,93 €/ano, com taxa interna de rentabilidade (TIR) de 17 %, um índice de rentabilidade (IR) de 1,85 e um período de retorno (PBP) de 5 anos. Todos os cenários avaliados registam rentabilidade do projeto de investimento, sem risco para o projeto.
Resumo:
A crescente necessidade de reduzir a dependência energética e a emissão de gases de efeito de estufa levou à adoção de uma série de políticas a nível europeu com vista a aumentar a eficiência energética e nível de controlo de equipamentos, reduzir o consumo e aumentar a percentagem de energia produzida a partir de fontes renováveis. Estas medidas levaram ao desenvolvimento de duas situações críticas para o setor elétrico: a substituição das cargas lineares tradicionais, pouco eficientes, por cargas não-lineares mais eficientes e o aparecimento da produção distribuída de energia a partir de fontes renováveis. Embora apresentem vantagens bem documentadas, ambas as situações podem afetar negativamente a qualidade de energia elétrica na rede de distribuição, principalmente na rede de baixa tensão onde é feita a ligação com a maior parte dos clientes e onde se encontram as cargas não-lineares e a ligação às fontes de energia descentralizadas. Isto significa que a monitorização da qualidade de energia tem, atualmente, uma importância acrescida devido aos custos relacionados com perdas inerentes à falta de qualidade de energia elétrica na rede e à necessidade de verificar que determinados parâmetros relacionados com a qualidade de energia elétrica se encontram dentro dos limites previstos nas normas e nos contratos com clientes de forma a evitar disputas ou reclamações. Neste sentido, a rede de distribuição tem vindo a sofrer alterações a nível das subestações e dos postos de transformação que visam aumentar a visibilidade da qualidade de energia na rede em tempo real. No entanto, estas medidas só permitem monitorizar a qualidade de energia até aos postos de transformação de média para baixa tensão, não revelando o estado real da qualidade de energia nos pontos de entrega ao cliente. A monitorização nestes pontos é feita periodicamente e não em tempo real, ficando aquém do necessário para assegurar a deteção correta de problemas de qualidade de energia no lado do consumidor. De facto, a metodologia de monitorização utilizada atualmente envolve o envio de técnicos ao local onde surgiu uma reclamação ou a um ponto de medição previsto para instalar um analisador de energia que permanece na instalação durante um determinado período de tempo. Este tipo de monitorização à posteriori impossibilita desde logo a deteção do problema de qualidade de energia que levou à reclamação, caso não se trate de um problema contínuo. Na melhor situação, o aparelho poderá detetar uma réplica do evento, mas a larga percentagem anomalias ficam fora deste processo por serem extemporâneas. De facto, para detetar o evento que deu origem ao problema é necessário monitorizar permanentemente a qualidade de energia. No entanto este método de monitorização implica a instalação permanente de equipamentos e não é viável do ponto de vista das empresas de distribuição de energia já que os equipamentos têm custos demasiado elevados e implicam a necessidade de espaços maiores nos pontos de entrega para conter os equipamentos e o contador elétrico. Uma alternativa possível que pode tornar viável a monitorização permanente da qualidade de energia consiste na introdução de uma funcionalidade de monitorização nos contadores de energia de determinados pontos da rede de distribuição. Os contadores são obrigatórios em todas as instalações ligadas à rede, para efeitos de faturação. Tradicionalmente estes contadores são eletromecânicos e recentemente começaram a ser substituídos por contadores inteligentes (smart meters), de natureza eletrónica, que para além de fazer a contagem de energia permitem a recolha de informação sobre outros parâmetros e aplicação de uma serie de funcionalidades pelo operador de rede de distribuição devido às suas capacidades de comunicação. A reutilização deste equipamento com finalidade de analisar a qualidade da energia junto dos pontos de entrega surge assim como uma forma privilegiada dado que se trata essencialmente de explorar algumas das suas características adicionais. Este trabalho tem como objetivo analisar a possibilidade descrita de monitorizar a qualidade de energia elétrica de forma permanente no ponto de entrega ao cliente através da utilização do contador elétrico do mesmo e elaborar um conjunto de requisitos para o contador tendo em conta a normalização aplicável, as características dos equipamentos utilizados atualmente pelo operador de rede e as necessidades do sistema elétrico relativamente à monitorização de qualidade de energia.