154 resultados para Symmetric-Riesz Fractional Derivative
Resumo:
This paper studies the dynamics of the Rayleigh piston using the modeling tools of Fractional Calculus. Several numerical experiments examine the effect of distinct values of the parameters. The time responses are transformed into the Fourier domain and approximated by means of power law approximations. The description reveals characteristics usual in Fractional Brownian phenomena.
Resumo:
This paper examines modern economic growth according to the multidimensional scaling (MDS) method and state space portrait (SSP) analysis. Electing GDP per capita as the main indicator for economic growth and prosperity, the long-run perspective from 1870 to 2010 identifies the main similarities among 34 world partners’ modern economic growth and exemplifies the historical waving mechanics of the largest world economy, the USA. MDS reveals two main clusters among the European countries and their old offshore territories, and SSP identifies the Great Depression as a mild challenge to the American global performance, when compared to the Second World War and the 2008 crisis.
Resumo:
Proceedings of the 12th Conference on 'Dynamical Systems -Theory and Applications'
Resumo:
This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.
Resumo:
Proceedings of the 10th Conference on Dynamical Systems Theory and Applications
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades due to the progress in the area of nonlinear dynamics. This article discusses several applications of fractional calculus in science and engineering, namely: the control of heat systems, the tuning of PID controllers based on fractional calculus concepts and the dynamics in hexapod locomotion.
Resumo:
The internal impedance of a wire is the function of the frequency. In a conductor, where the conductivity is sufficiently high, the displacement current density can be neglected. In this case, the conduction current density is given by the product of the electric field and the conductance. One of the aspects the high-frequency effects is the skin effect (SE). The fundamental problem with SE is it attenuates the higher frequency components of a signal. The SE was first verified by Kelvin in 1887. Since then many researchers developed work on the subject and presently a comprehensive physical model, based on the Maxwell equations, is well established. The Maxwell formalism plays a fundamental role in the electromagnetic theory. These equations lead to the derivation of mathematical descriptions useful in many applications in physics and engineering. Maxwell is generally regarded as the 19th century scientist who had the greatest influence on 20th century physics, making contributions to the fundamental models of nature. The Maxwell equations involve only the integer-order calculus and, therefore, it is natural that the resulting classical models adopted in electrical engineering reflect this perspective. Recently, a closer look of some phenomas present in electrical systems and the motivation towards the development of precise models, seem to point out the requirement for a fractional calculus approach. Bearing these ideas in mind, in this study we address the SE and we re-evaluate the results demonstrating its fractional-order nature.
Resumo:
This paper analyses the performance of a genetic algorithm (GA) in the synthesis of digital circuits using two novel approaches. The first concept consists in improving the static fitness function by including a discontinuity evaluation. The measure of variability in the error of the Boolean table has similarities with the function continuity issue in classical calculus. The second concept extends the static fitness by introducing a fractional-order dynamical evaluation.
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04
Resumo:
First IFAC Workshop on Fractional Differentiation and Its Application - 19-21 July 2004, Enseirb, Bordeaux, France - FDA'04
Resumo:
This paper reports investigation on the estimation of the short circuit impedance of power transformers, using fractional order calculus to analytically study the influence of the diffusion phenomena in the windings. The aim is to better characterize the medium frequency range behavior of leakage inductances of power transformer models, which include terms to represent the magnetic field diffusion process in the windings. Comparisons between calculated and measured values are shown and discussed.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses a FC perspective in the study of the dynamics and control of some distributed parameter systems.
Resumo:
A novel control technique is investigated in the adaptive control of a typical paradigm, an approximately and partially modeled cart plus double pendulum system. In contrast to the traditional approaches that try to build up ”complete” and ”permanent” system models it develops ”temporal” and ”partial” ones that are valid only in the actual dynamic environment of the system, that is only within some ”spatio-temporal vicinity” of the actual observations. This technique was investigated for various physical systems via ”preliminary” simulations integrating by the simplest 1st order finite element approach for the time domain. In 2004 INRIA issued its SCILAB 3.0 and its improved numerical simulation tool ”Scicos” making it possible to generate ”professional”, ”convenient”, and accurate simulations. The basic principles of the adaptive control, the typical tools available in Scicos, and others developed by the authors, as well as the improved simulation results and conclusions are presented in the contribution.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses a FC perspective in the study of the dynamics and control of mechanical systems.
Resumo:
The theory of fractional calculus goes back to the beginning of thr throry of differential calculus but its inherent complexity postponed the applications of the associated concepts. In the last decade the progress in the areas of chaos and fractals revealed subtle relationships with the fractional calculus leading to an increasing interest in the development of the new paradigm. In the area of automaticcontrol preliminary work has already been carried out but the proposed algorithms are restricted to the frequency domain. The paper discusses the design of fractional-order discrete-time controllers. The algorithms studied adopt the time domein, which makes them suited for z-transform analusis and discrete-time implementation. The performance of discrete-time fractional-order controllers with linear and non-linear systems is also investigated.