89 resultados para Robot applications
Resumo:
The Darwinian Particle Swarm Optimization (DPSO) is an evolutionary algorithm that extends the Particle Swarm Optimization using natural selection to enhance the ability to escape from sub-optimal solutions. An extension of the DPSO to multi-robot applications has been recently proposed and denoted as Robotic Darwinian PSO (RDPSO), benefiting from the dynamical partitioning of the whole population of robots, hence decreasing the amount of required information exchange among robots. This paper further extends the previously proposed algorithm adapting the behavior of robots based on a set of context-based evaluation metrics. Those metrics are then used as inputs of a fuzzy system so as to systematically adjust the RDPSO parameters (i.e., outputs of the fuzzy system), thus improving its convergence rate, susceptibility to obstacles and communication constraints. The adapted RDPSO is evaluated in groups of physical robots, being further explored using larger populations of simulated mobile robots within a larger scenario.
Resumo:
The interest in the development of climbing robots has grown rapidly in the last years. Climbing robots are useful devices that can be adopted in a variety of applications, such as maintenance and inspection in the process and construction industries. These systems are mainly adopted in places where direct access by a human operator is very expensive, because of the need for scaffolding, or very dangerous, due to the presence of an hostile environment. The main motivations are to increase the operation efficiency, by eliminating the costly assembly of scaffolding, or to protect human health and safety in hazardous tasks. Several climbing robots have already been developed, and other are under development, for applications ranging from cleaning to inspection of difficult to reach constructions. A wall climbing robot should not only be light, but also have large payload, so that it may reduce excessive adhesion forces and carry instrumentations during navigation. These machines should be capable of travelling over different types of surfaces, with different inclinations, such as floors, walls, or ceilings, and to walk between such surfaces (Elliot et al. (2006); Sattar et al. (2002)). Furthermore, they should be able of adapting and reconfiguring for various environment conditions and to be self-contained. Up to now, considerable research was devoted to these machines and various types of experimental models were already proposed (according to Chen et al. (2006), over 200 prototypes aimed at such applications had been developed in the world by the year 2006). However, we have to notice that the application of climbing robots is still limited. Apart from a couple successful industrialized products, most are only prototypes and few of them can be found in common use due to unsatisfactory performance in on-site tests (regarding aspects such as their speed, cost and reliability). Chen et al. (2006) present the main design problems affecting the system performance of climbing robots and also suggest solutions to these problems. The major two issues in the design of wall climbing robots are their locomotion and adhesion methods. With respect to the locomotion type, four types are often considered: the crawler, the wheeled, the legged and the propulsion robots. Although the crawler type is able to move relatively faster, it is not adequate to be applied in rough environments. On the other hand, the legged type easily copes with obstacles found in the environment, whereas generally its speed is lower and requires complex control systems. Regarding the adhesion to the surface, the robots should be able to produce a secure gripping force using a light-weight mechanism. The adhesion method is generally classified into four groups: suction force, magnetic, gripping to the surface and thrust force type. Nevertheless, recently new methods for assuring the adhesion, based in biological findings, were proposed. The vacuum type principle is light and easy to control though it presents the problem of supplying compressed air. An alternative, with costs in terms of weight, is the adoption of a vacuum pump. The magnetic type principle implies heavy actuators and is used only for ferromagnetic surfaces. The thrust force type robots make use of the forces developed by thrusters to adhere to the surfaces, but are used in very restricted and specific applications. Bearing these facts in mind, this chapter presents a survey of different applications and technologies adopted for the implementation of climbing robots locomotion and adhesion to surfaces, focusing on the new technologies that are recently being developed to fulfill these objectives. The chapter is organized as follows. Section two presents several applications of climbing robots. Sections three and four present the main locomotion principles, and the main "conventional" technologies for adhering to surfaces, respectively. Section five describes recent biological inspired technologies for robot adhesion to surfaces. Section six introduces several new architectures for climbing robots. Finally, section seven outlines the main conclusions.
Resumo:
13th International Conference on Autonomous Robot Systems (Robotica), 2013
Resumo:
The robotics community is concerned with the ability to infer and compare the results from researchers in areas such as vision perception and multi-robot cooperative behavior. To accomplish that task, this paper proposes a real-time indoor visual ground truth system capable of providing accuracy with at least more magnitude than the precision of the algorithm to be evaluated. A multi-camera architecture is proposed under the ROS (Robot Operating System) framework to estimate the 3D position of objects and the implementation and results were contextualized to the Robocup Middle Size League scenario.
Resumo:
It is widely accepted that organizations and individuals must be innovative and continually create new knowledge and ideas to deal with rapid change. Innovation plays an important role in not only the development of new business, process and products, but also in competitiveness and success of any organization. Technology for Creativity and Innovation: Tools, Techniques and Applications provides empirical research findings and best practices on creativity and innovation in business, organizational, and social environments. It is written for educators, academics and professionals who want to improve their understanding of creativity and innovation as well as the role technology has in shaping this discipline.
Resumo:
Power system planning, control and operation require an adequate use of existing resources as to increase system efficiency. The use of optimal solutions in power systems allows huge savings stressing the need of adequate optimization and control methods. These must be able to solve the envisaged optimization problems in time scales compatible with operational requirements. Power systems are complex, uncertain and changing environments that make the use of traditional optimization methodologies impracticable in most real situations. Computational intelligence methods present good characteristics to address this kind of problems and have already proved to be efficient for very diverse power system optimization problems. Evolutionary computation, fuzzy systems, swarm intelligence, artificial immune systems, neural networks, and hybrid approaches are presently seen as the most adequate methodologies to address several planning, control and operation problems in power systems. Future power systems, with intensive use of distributed generation and electricity market liberalization increase power systems complexity and bring huge challenges to the forefront of the power industry. Decentralized intelligence and decision making requires more effective optimization and control techniques techniques so that the involved players can make the most adequate use of existing resources in the new context. The application of computational intelligence methods to deal with several problems of future power systems is presented in this chapter. Four different applications are presented to illustrate the promises of computational intelligence, and illustrate their potentials.
Resumo:
Presently power system operation produces huge volumes of data that is still treated in a very limited way. Knowledge discovery and machine learning can make use of these data resulting in relevant knowledge with very positive impact. In the context of competitive electricity markets these data is of even higher value making clear the trend to make data mining techniques application in power systems more relevant. This paper presents two cases based on real data, showing the importance of the use of data mining for supporting demand response and for supporting player strategic behavior.
Resumo:
Development of Dual Source Computed Tomography (Definition, Siemens Medical Solutions, Erlanger, Germany) allowed advances in temporal resolution, with the addition of a second X-ray source and an array of detectors to the TCM 64 slices. The ability to run exams on Dual Energy, allows greater differentiation of tissues, showing differences between closer attenuation coefficients. In terms of renal applications, the distinction of kidney stones and masses become one of the main advantages of the use of dual-energy technology. This article pretends to demonstrate operating principles of this equipment, as its main renal applications.
Resumo:
The idea behind creating this special issue on real world applications of intelligent tutoring systems was to bring together in a single publication some of the most important examples of success in the use of ITS technology. This will serve as a reference to all researchers working in the area. It will also be an important resource for the industry, showing the maturity of ITS technology and creating an atmosphere for funding new ITS projects. Simultaneously, it will be valuable to academic groups, motivating students for new ideas of ITS and promoting new academic research work in the area.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Aims: This paper aims to address some of the main possible applications of actual Nuclear Medicine Imaging techniques and methodologies in the specific context of Sports Medicine, namely in two critical systems: musculoskeletal and cardiovascular. Discussion: At the musculoskeletal level, bone scintigraphy techniques proved to be a mean of diagnosis of functional orientation and high sensibility compared with other morphological imaging techniques in the detection and temporal evaluation of pathological situations, for instance allowing the acquisition of information of great relevance in athletes with stress fractures. On the other hand, infection/inflammation studies might be of an important added value to characterize specific situations, early diagnose of potential critical issues – so giving opportunity to precise, complete and fast solutions – while allowing the evaluation and eventual optimization of training programs. At cardiovascular system level, Nuclear Medicine had proved to be crucial in differential diagnosis between cardiac hypertrophy secondary to physical activity (the so called "athlete's heart") and hypertrophic cardiomyopathy, in the diagnosis and prognosis of changes in cardiac function in athletes, as well as in direct - and non-invasive - in vivo visualization of sympathetic cardiac innervation, something that seems to take more and more importance nowadays, namely in order to try to avoid sudden death episodes at intense physical effort. Also the clinical application of Positron Emission Tomography (PET) has becoming more and more widely recognized as promising. Conclusions: It has been concluded that Nuclear Medicine can become an important application in Sports Medicine. Its well established capabilities to early detection of processes involving functional properties allied to its high sensibility and the actual technical possibilities (namely those related with hybrid imaging, that allows to add information provided by high resolution morphological imaging techniques, such as CT and/or MRI) make it a powerful diagnostic tool, claiming to be used on an each day higher range of clinical applications related with all levels of sport activities. Since the improvements at equipment characteristics and detection levels allows the use of smaller and smaller doses, so minimizing radiation exposure it is believed by the authors that the increase of the use of NM tools in the Sports Medicine area should be considered.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Neste trabalho pretende-se introduzir os conceitos associados à lógica difusa no controlo de sistemas, neste caso na área da robótica autónoma, onde é feito um enquadramento da utilização de controladores difusos na mesma. Foi desenvolvido de raiz um AGV (Autonomous Guided Vehicle) de modo a se implementar o controlador difuso, e testar o desempenho do mesmo. Uma vez que se pretende de futuro realizar melhorias e/ou evoluções optou-se por um sistema modular em que cada módulo é responsável por uma determinada tarefa. Neste trabalho existem três módulos que são responsáveis pelo controlo de velocidade, pela aquisição dos dados dos sensores e, por último, pelo controlador difuso do sistema. Após a implementação do controlador difuso, procedeu-se a testes para validar o sistema onde foram recolhidos e registados os dados provenientes dos sensores durante o funcionamento normal do robô. Este dados permitiram uma melhor análise do desempenho do robô. Verifica-se que a lógica difusa permite obter uma maior suavidade na transição de decisões, e que com o aumento do número de regras é possível tornar o sistema ainda mais suave. Deste modo, verifica-se que a lógica difusa é uma ferramenta útil e funcional para o controlo de aplicações. Como desvantagem surge a quantidade de dados associados à implementação, tais como, os universos de discurso, as funções de pertença e as regras. Ao se aumentar o número de regras de controlo do sistema existe também um aumento das funções de pertença consideradas para cada variável linguística; este facto leva a um aumento da memória necessária e da complexidade na implementação pela quantidade de dados que têm de ser tratados. A maior dificuldade no projecto de um controlador difuso encontra-se na definição das variáveis linguísticas através dos seus universos de discurso e das suas funções de pertença, pois a definição destes pode não ser a mais adequada ao contexto de controlo e torna-se necessário efectuar testes e, consequentemente, modificações à definição das funções de pertença para melhorar o desempenho do sistema. Todos os aspectos referidos são endereçados no desenvolvimento do AGV e os respectivos resultados são apresentados e analisados.
Resumo:
A navegação de veículos autónomos em ambientes não estruturados continua a ser um problema em aberto. A complexidade do mundo real ainda é um desafio. A difícil caracterização do relevo irregular, dos objectos dinâmicos e pouco distintos(e a inexistência de referências de localização) tem sido alvo de estudo e do desenvolvimento de vários métodos que permitam de uma forma eficiente, e em tempo real, modelizar o espaço tridimensional. O trabalho realizado ao longo desta dissertação insere-se na estratégia do Laboratório de Sistemas Autónomos (LSA) na pesquisa e desenvolvimento de sistemas sensoriais que possibilitem o aumento da capacidade de percepção das plataformas robóticas. O desenvolvimento de um sistema de modelização tridimensional visa acrescentar aos projectos LINCE (Land INtelligent Cooperative Explorer) e TIGRE (Terrestrial Intelligent General proposed Robot Explorer) maior autonomia e capacidade de exploração e mapeamento. Apresentamos alguns sensores utilizados para a aquisição de modelos tridimensionais, bem como alguns dos métodos mais utilizados para o processo de mapeamento, e a sua aplicação em plataformas robóticas. Ao longo desta dissertação são apresentadas e validadas técnicas que permitem a obtenção de modelos tridimensionais. É abordado o problema de analisar a cor e geometria dos objectos, e da criação de modelos realistas que os representam. Desenvolvemos um sistema que nos permite a obtenção de dados volumétricos tridimensionais, a partir de múltiplas leituras de um Laser Range Finder bidimensional de médio alcance. Aos conjuntos de dados resultantes associamos numa nuvem de pontos coerente e referenciada. Foram desenvolvidas e implementadas técnicas de segmentação que permitem inspeccionar uma nuvem de pontos e classifica-la quanto às suas características geométricas, bem como ao tipo de estruturas que representem. São apresentadas algumas técnicas para a criação de Mapas de Elevação Digital, tendo sido desenvolvida um novo método que tira partido da segmentação efectuada