165 resultados para Requisito não-funcional. Arquitetura de software. NFR-framework. Padrão arquitetural
Resumo:
Atualmente, verifica-se um aumento na necessidade de software feito à medida do cliente, que se consiga adaptar de forma rápida as constantes mudanças da sua área de negócio. Cada cliente tem os seus problemas concretos que precisa de resolver, não lhe sendo muitas vezes possível dispensar uma elevada quantidade de recursos para atingir os fins pretendidos. De forma a dar resposta a estes problemas surgiram várias arquiteturas e metodologias de desenvolvimento de software, que permitem o desenvolvimento ágil de aplicações altamente configuráveis, que podem ser personalizadas por qualquer utilizador das mesmas. Este dinamismo, trazido para as aplicações sobre a forma de modelos que são personalizados pelos utilizadores e interpretados por uma plataforma genérica, cria maiores desafios no momento de realizar testes, visto existir um número de variáveis consideravelmente maior que numa aplicação com uma arquitetura tradicional. É necessário, em todos os momentos, garantir a integridade de todos os modelos, bem como da plataforma responsável pela sua interpretação, sem ser necessário o desenvolvimento constante de aplicações para suportar os testes sobre os diferentes modelos. Esta tese debruça-se sobre uma aplicação, a plataforma myMIS, que permite a interpretação de modelos orientados à gestão, escritos numa linguagem específica de domínio, sendo realizada a avaliação do estado atual e definida uma proposta de práticas de testes a aplicar no desenvolvimento da mesma. A proposta resultante desta tese permitiu verificar que, apesar das dificuldades inerentes à arquitetura da aplicação, o desenvolvimento de testes de uma forma genérica é possível, podendo as mesmas lógicas ser utilizadas para o teste de diversos modelos distintos.
Resumo:
Article in Press, Corrected Proof
Resumo:
The recent technological advancements and market trends are causing an interesting phenomenon towards the convergence of High-Performance Computing (HPC) and Embedded Computing (EC) domains. On one side, new kinds of HPC applications are being required by markets needing huge amounts of information to be processed within a bounded amount of time. On the other side, EC systems are increasingly concerned with providing higher performance in real-time, challenging the performance capabilities of current architectures. The advent of next-generation many-core embedded platforms has the chance of intercepting this converging need for predictable high-performance, allowing HPC and EC applications to be executed on efficient and powerful heterogeneous architectures integrating general-purpose processors with many-core computing fabrics. To this end, it is of paramount importance to develop new techniques for exploiting the massively parallel computation capabilities of such platforms in a predictable way. P-SOCRATES will tackle this important challenge by merging leading research groups from the HPC and EC communities. The time-criticality and parallelisation challenges common to both areas will be addressed by proposing an integrated framework for executing workload-intensive applications with real-time requirements on top of next-generation commercial-off-the-shelf (COTS) platforms based on many-core accelerated architectures. The project will investigate new HPC techniques that fulfil real-time requirements. The main sources of indeterminism will be identified, proposing efficient mapping and scheduling algorithms, along with the associated timing and schedulability analysis, to guarantee the real-time and performance requirements of the applications.
Resumo:
Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.
Resumo:
It is generally challenging to determine end-to-end delays of applications for maximizing the aggregate system utility subject to timing constraints. Many practical approaches suggest the use of intermediate deadline of tasks in order to control and upper-bound their end-to-end delays. This paper proposes a unified framework for different time-sensitive, global optimization problems, and solves them in a distributed manner using Lagrangian duality. The framework uses global viewpoints to assign intermediate deadlines, taking resource contention among tasks into consideration. For soft real-time tasks, the proposed framework effectively addresses the deadline assignment problem while maximizing the aggregate quality of service. For hard real-time tasks, we show that existing heuristic solutions to the deadline assignment problem can be incorporated into the proposed framework, enriching their mathematical interpretation.
Resumo:
Embedded real-time applications increasingly present high computation requirements, which need to be completed within specific deadlines, but that present highly variable patterns, depending on the set of data available in a determined instant. The current trend to provide parallel processing in the embedded domain allows providing higher processing power; however, it does not address the variability in the processing pattern. Dimensioning each device for its worst-case scenario implies lower average utilization, and increased available, but unusable, processing in the overall system. A solution for this problem is to extend the parallel execution of the applications, allowing networked nodes to distribute the workload, on peak situations, to neighbour nodes. In this context, this report proposes a framework to develop parallel and distributed real-time embedded applications, transparently using OpenMP and Message Passing Interface (MPI), within a programming model based on OpenMP. The technical report also devises an integrated timing model, which enables the structured reasoning on the timing behaviour of these hybrid architectures.
RadiaLE: A framework for designing and assessing link quality estimators in wireless sensor networks
Resumo:
Stringent cost and energy constraints impose the use of low-cost and low-power radio transceivers in large-scale wireless sensor networks (WSNs). This fact, together with the harsh characteristics of the physical environment, requires a rigorous WSN design. Mechanisms for WSN deployment and topology control, MAC and routing, resource and mobility management, greatly depend on reliable link quality estimators (LQEs). This paper describes the RadiaLE framework, which enables the experimental assessment, design and optimization of LQEs. RadiaLE comprises (i) the hardware components of the WSN testbed and (ii) a software tool for setting-up and controlling the experiments, automating link measurements gathering through packets-statistics collection, and analyzing the collected data, allowing for LQEs evaluation. We also propose a methodology that allows (i) to properly set different types of links and different types of traffic, (ii) to collect rich link measurements, and (iii) to validate LQEs using a holistic and unified approach. To demonstrate the validity and usefulness of RadiaLE, we present two case studies: the characterization of low-power links and a comparison between six representative LQEs. We also extend the second study for evaluating the accuracy of the TOSSIM 2 channel model.
Resumo:
ARINC specification 653-2 describes the interface between application software and underlying middleware in a distributed real-time avionics system. The real-time workload in this system comprises of partitions, where each partition consists of one or more processes. Processes incur blocking and preemption overheads and can communicate with other processes in the system. In this work we develop compositional techniques for automated scheduling of such partitions and processes. At present, system designers manually schedule partitions based on interactions they have with the partition vendors. This approach is not only time consuming, but can also result in under utilization of resources. In contrast, the technique proposed in this paper is a principled approach for scheduling ARINC-653 partitions and therefore should facilitate system integration.
Resumo:
In distributed soft real-time systems, maximizing the aggregate quality-of-service (QoS) is a typical system-wide goal, and addressing the problem through distributed optimization is challenging. Subtasks are subject to unpredictable failures in many practical environments, and this makes the problem much harder. In this paper, we present a robust optimization framework for maximizing the aggregate QoS in the presence of random failures. We introduce the notion of K-failure to bound the effect of random failures on schedulability. Using this notion we define the concept of K-robustness that quantifies the degree of robustness on QoS guarantee in a probabilistic sense. The parameter K helps to tradeoff achievable QoS versus robustness. The proposed robust framework produces optimal solutions through distributed computations on the basis of Lagrangian duality, and we present some implementation techniques. Our simulation results show that the proposed framework can probabilistically guarantee sub-optimal QoS which remains feasible even in the presence of random failures.
Resumo:
Link quality estimation is a fundamental building block for the design of several different mechanisms and protocols in wireless sensor networks (WSN). A thorough experimental evaluation of link quality estimators (LQEs) is thus mandatory. Several WSN experimental testbeds have been designed ([1–4]) but only [3] and [2] targeted link quality measurements. However, these were exploited for analyzing low-power links characteristics rather than the performance of LQEs. Despite its importance, the experimental performance evaluation of LQEs remains an open problem, mainly due to the difficulty to provide a quantitative evaluation of their accuracy. This motivated us to build a benchmarking testbed for LQE - RadiaLE, which we present here as a demo. It includes (i.) hardware components that represent the WSN under test and (ii.) a software tool for the set up and control of the experiments and also for analyzing the collected data, allowing for LQEs evaluation.
Resumo:
Nos últimos anos, o avanço da tecnologia e a miniaturização de diversos componentes têm permitido o aparecimento de novos conceitos, ideias e projetos, que até aqui não passariam de filmes de ficção científica. Com a tecnologia atual, podem ser desenvolvidos pequenos dispositivos wearable com diversas interfaces, múltiplas conectividades, poder de processamento e autonomia. Permitindo desta forma, dar resposta à crescente necessidade de interação com os mais diversos equipamentos eletrónicos do dia-a-dia, melhorando o acesso e o fornecimento de informação. O principal objetivo deste trabalho passa assim por demonstrar e implementar um conceito que permita estreitar e facilitar a interação entre o utilizador e o mundo que o rodeia, quer em ambientes domésticos quer industriais. Para isso foi projetado e implementado um dispositivo wearable (para utilização no pulso) baseado numa arquitetura de hardware e software capaz de correr diferentes aplicações, tais como extensão de alertas de um smartphone, crowdsourcing de informações meteorológicas, manutenção e inspeção industrial e monitorização remota de forças de segurança. Os resultados obtidos demonstram que este conceito é viável tanto do ponto de vista técnico como funcional, evidenciando boas hipóteses para que estes conceitos, métodos e tecnologias possam ser integradas em plataformas robóticas desenvolvidas no âmbito de projetos do Laboratório de Sistemas Autónomos (LSA) bem como nos contextos industrial e de lazer.
Resumo:
Relatório de Estágio
Resumo:
Este trabalho académico surge no âmbito da realização da dissertação do Mestrado em Engenharia e Gestão Industrial. Tem como objetivo a melhoria da gestão do Departamento de Infraestruturas, numa empresa de produção de motores elétricos para a indústria automóvel, através da análise, implementação e melhoria de um software de gestão de manutenção, de forma a aumentar a eficiência do Departamento. Este estudo foi desenvolvido durante um estágio curricular na empresa Globe Motors Portugal Lda, localizada em Vila do Conde. Para sua sustentação, foi efetuada uma análise funcional, suportada por um Software de gestão de manutenção, de forma a perceber qual a importância que o mesmo tem no funcionamento do Departamento de Infraestruturas. Pretendeu-se compreender quais as vantagens e desvantagens da sua utilização. Posteriormente, implementou-se uma nova versão deste software, analisando-se os pontos fortes e as oportunidades de melhoria, de forma a tornar o Departamento de infraestruturas mais eficiente, através da utilização desta renovada ferramenta de trabalho. Como objetivo último, pretendeu-se à melhoria da organização e gestão do Departamento de infraestruturas, contribuindo para um desenvolvimento de toda a empresa, uma vez que comungamos a ideia de que só é possível ser competitivo, num mercado altamente exigente, através de processos eficientes, possibilitando a redução de custos a todos os níveis.
Resumo:
Currently, due to the widespread use of computers and the internet, students are trading libraries for the World Wide Web and laboratories with simulation programs. In most courses, simulators are made available to students and can be used to proof theoretical results or to test a developing hardware/product. Although this is an interesting solution: low cost, easy and fast way to perform some courses work, it has indeed major disadvantages. As everything is currently being done with/in a computer, the students are loosing the “feel” of the real values of the magnitudes. For instance in engineering studies, and mainly in the first years, students need to learn electronics, algorithmic, mathematics and physics. All of these areas can use numerical analysis software, simulation software or spreadsheets and in the majority of the cases data used is either simulated or random numbers, but real data could be used instead. For example, if a course uses numerical analysis software and needs a dataset, the students can learn to manipulate arrays. Also, when using the spreadsheets to build graphics, instead of using a random table, students could use a real dataset based, for instance, in the room temperature and its variation across the day. In this work we present a framework which uses a simple interface allowing it to be used by different courses where the computers are the teaching/learning process in order to give a more realistic feeling to students by using real data. A framework is proposed based on a set of low cost sensors for different physical magnitudes, e.g. temperature, light, wind speed, which are connected to a central server, that the students have access with an Ethernet protocol or are connected directly to the student computer/laptop. These sensors use the communication ports available such as: serial ports, parallel ports, Ethernet or Universal Serial Bus (USB). Since a central server is used, the students are encouraged to use sensor values results in their different courses and consequently in different types of software such as: numerical analysis tools, spreadsheets or simply inside any programming language when a dataset is needed. In order to do this, small pieces of hardware were developed containing at least one sensor using different types of computer communication. As long as the sensors are attached in a server connected to the internet, these tools can also be shared between different schools. This allows sensors that aren't available in a determined school to be used by getting the values from other places that are sharing them. Another remark is that students in the more advanced years and (theoretically) more know how, can use the courses that have some affinities with electronic development to build new sensor pieces and expand the framework further. The final solution provided is very interesting, low cost, simple to develop, allowing flexibility of resources by using the same materials in several courses bringing real world data into the students computer works.
Resumo:
This study aims to analyze and compare four micro-firms' organizational culture, evaluated through the Competing Values Framework (Quinn & Rohbaugh, 1983). Data was collected in 2011 and 2013 in firms selling the same type of software and providing the same kind of services, focusing on the years between 2008-2011. Findings point to somewhat different results of micro-firms, when comparing to other samples in the literature. Suggestions for future research are given.