30 resultados para 2D cutting and packing
Resumo:
With advancement in computer science and information technology, computing systems are becoming increasingly more complex with an increasing number of heterogeneous components. They are thus becoming more difficult to monitor, manage, and maintain. This process has been well known as labor intensive and error prone. In addition, traditional approaches for system management are difficult to keep up with the rapidly changing environments. There is a need for automatic and efficient approaches to monitor and manage complex computing systems. In this paper, we propose an innovative framework for scheduling system management by combining Autonomic Computing (AC) paradigm, Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems
Resumo:
This document presents particular description of work done during student’s internship in PR Metal company realized as ERASMUS PROJECT at ISEP. All information including company’s description and its structure, overview of the problems and analyzed cases, all stages of projects from concept to conclusion can be found here. Description of work done during the internship is divided here into two pieces. First part concerns one activities of the company which is robotic chefs (kitchen robot) production line. Work, that was done for development of this line involved several tasks, among them: creating a single-worker montage station for screwing robots housing’s parts, improve security system for laser welding chamber, what particularly consists in designing automatically closing door system with special surface, that protects against destructive action of laser beam, test station for examination of durability of heating connectors, solving problem with rotors vibrations. Second part tells about main task, realized in second half of internship and stands a complete description of machine development and design. The machine is a part of car handle latch cable production line and its tasks are: cutting cable to required length and hot-forming plastic cover for further assembly needs.
Resumo:
In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, at both upstream and downstream of the production process, namely: i) Adoption of a new heating system for pultrusion die-tool in the manufacturing process, more effective and with minor heat losses; ii) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
In this study, an attempt was made in order to measure and evaluate the eco-efficiency performance of a pultruded composite processing company. For this purpose the recommendations of World Business Council for Sustainable Development (WCSD) and the directives of ISO 14301 standard were followed and applied. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent ecoefficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
The problem addressed here originates in the industry of flat glass cutting and wood panel sawing, where smaller items are cut from larger items accordingly to predefined cutting patterns. In this type of industry the smaller pieces that are cut from the patterns are piled around the machine in stacks according to the size of the pieces, which are moved to the warehouse only when all items of the same size have been cut. If the cutting machine can process only one pattern at a time, and the workspace is limited, it is desirable to set the sequence in which the cutting patterns are processed in a way to minimize the maximum number of open stacks around the machine. This problem is known in literature as the minimization of open stacks (MOSP). To find the best sequence of the cutting patterns, we propose an integer programming model, based on interval graphs, that searches for an appropriate edge completion of the given graph of the problem, while defining a suitable coloring of its vertices.
Resumo:
We describe a novel approach to scheduling resolution by combining Autonomic Computing (AC), Multi-Agent Systems (MAS) and Nature Inspired Optimization Techniques (NIT). Autonomic Computing has emerged as paradigm aiming at embedding applications with a management structure similar to a central nervous system. A natural Autonomic Computing evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference. In this paper we envisage the use of Multi-Agent Systems paradigm for supporting dynamic and distributed scheduling in Manufacturing Systems with Autonomic properties, in order to reduce the complexity of managing systems and human interference. Additionally, we consider the resolution of realistic problems. The scheduling of a Cutting and Treatment Stainless Steel Sheet Line will be evaluated. Results show that proposed approach has advantages when compared with other scheduling systems.
Resumo:
Mestrado em Engenharia Química
Resumo:
In this study, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behaviour of polyester polymer mortars (PM) was assessed. For this purpose, different contents of GFRP recyclates, between 4% up to 12% in weight, were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of the addition of a silane coupling agent to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers as well as non-conform products and scrap resulting from pultrusion manufacturing process are landfilled, with additional costs to producers and suppliers. Hence, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as partial replacement of aggregates and reinforcement for PM materials, with significant improvements on mechanical properties of resultant mortars with regards to waste-free formulations.
Resumo:
Mestrado em Engenharia Química - Ramo Tecnologias de Protecção Ambiental
Resumo:
Este projeto foi realizado na Empresa Fernando Jesus Mourão & Cª Lda, durante o ano de 2012, e teve como objetivo a melhoria do processo produtivo. Esta melhoria assentou na identificação de possíveis pontos de desperdício, no estudo e avaliação de soluções e por fim na definição de propostas de melhoria globais que visem ajustar o fluxo do processo produtivo à procura e simultaneamente minimizar custos operacionais. De forma a atingir estas metas, foi feito um levantamento exaustivo do processo produtivo e das respetivas operações. Neste estudo, apesar do elevado numero de oportunidades de melhoria, foi possível identificar duas áreas que se revelaram criticas e fundamentais para a introdução da filosofia de melhoria continua na empresa. Estas áreas que são o objeto de estudo desta dissertação são: o corte laser e a organização do pavilhão 3. Uma vez identificados as áreas críticas, procedeu-se a uma análise e definição das ações de melhoria a empreender de modo a melhorar o fluxo produtivo e a sua organização, e simultaneamente reduzir custos. Na área de corte laser procurou-se implementar a filosofia de produção “Lean” nomeadamente através da ferramenta de análise PDCA (Plan-Do-Check-Act), como ferramenta auxiliar do estudo para elaborar um plano de ação, implementar as ações, analisar os resultados e procurar a manutenção dos mesmos. Na intervenção do pavilhão 3 foi usada a técnica dos 5S para organizar e agilizar o funcionamento do mesmo. Todo o trabalho assenta na filosofia Lean e nos seus princípios, tendo-se por isso utilizado as ferramentas especificas Lean na concretização das tarefas executadas no seu âmbito. Para medir os resultados, antes e depois das ações implementadas, foi utilizada o indicador de eficiência (Overall Equipment Effectiveness) para o caso do processo de corte laser. Após a implementação das medidas definidas no processo de corte laser foi possível observar uma melhoria do indicador OEE de cerca de 20 por cento. Por outro lado as melhorias implementadas através da ferramenta dos 5S no pavilhão 3, trouxe ganhos visíveis de aumento de produtividade que beneficiaram o tempo de resposta da empresa.
Resumo:
In this study the potential eco-efficiency performance of a pultrusion manufacturing company was assessed. Indicators values and eco-efficiency ratios were estimated taking into account the implementation of new proceedings and procedures in the production process of glass fibre reinforced polymers (GFRP) pultrusion profiles. Two different approaches were foreseen: 1)Adoption of a new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; and 2) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
The World Business Council for Sustainable Development (WBCSD) defines Eco-Efficiency as follows: ‘Eco- Efficiency is achieved by the delivery of competitively priced-goods and services that satisfy human needs and bring quality of life, while progressively reducing ecological impacts and resource intensity throughout the life-cycle to a level at least in line with the earth’s estimated carrying capacity’. Eco-Efficiency is under this point of view a key concept for sustainable development, bringing together economic and ecological progress. Measuring the Eco-Efficiency of a company, factory or business, is a complex process that involves the measurement and control of several and relevant parameters or indicators, globally applied to all companies in general, or specific according to the nature and specificities of the business itself. In this study, an attempt was made in order to measure and evaluate the eco-efficiency of a pultruded composite processing company. For this purpose the recommendations of WBCSD [1] and the directives of ISO 14301 standard [2] were followed and applied. The analysis was restricted to the main business branch of the company: the production and sale of standard GFRP pultrusion profiles. The main general indicators of eco-efficiency, as well as the specific indicators, were defined and determined according to ISO 14031 recommendations. With basis on indicators’ figures, the value profile, the environmental profile, and the pertinent eco-efficiency’s ratios were established and analyzed. In order to evaluate potential improvements on company eco-performance, new indicators values and ecoefficiency ratios were estimated taking into account the implementation of new proceedings and procedures, both in upstream and downstream of the production process, namely: a) Adoption of new heating system for pultrusion die in the manufacturing process, more effective and with minor heat losses; b) Implementation of new software for stock management (raw materials and final products) that minimize production failures and delivery delays to final consumer; c) Recycling approach, with partial waste reuse of scrap material derived from manufacturing, cutting and assembly processes of GFRP profiles. In particular, the last approach seems to significantly improve the eco-efficient performance of the company. Currently, by-products and wastes generated in the manufacturing process of GFRP profiles are landfilled, with supplementary added costs to this company traduced by transport of scrap, landfill taxes and required test analysis to waste materials. However, mechanical recycling of GFRP waste materials, with reduction to powdered and fibrous particulates, constitutes a recycling process that can be easily attained on heavy-duty cutting mills. The posterior reuse of obtained recyclates, either into a close-looping process, as filler replacement of resin matrix of GFRP profiles, or as reinforcement of other composite materials produced by the company, will drive to both costs reduction in raw materials and landfill process, and minimization of waste landfill. These features lead to significant improvements on the sequent assessed eco-efficiency ratios of the present case study, yielding to a more sustainable product and manufacturing process of pultruded GFRP profiles.
Resumo:
In this work, the effect of incorporation of recycled glass fibre reinforced plastics (GFRP) waste materials, obtained by means of shredding and milling processes, on mechanical behavior of polyester polymer mortar (PM) materials was assessed. For this purpose, different contents of GFRP recyclates (between 4% up to 12% in mass), were incorporated into polyester PM materials as sand aggregates and filler replacements. The effect of silane coupling agent addition to resin binder was also evaluated. Applied waste material was proceeding from the shredding of the leftovers resultant from the cutting and assembly processes of GFRP pultrusion profiles. Currently, these leftovers, jointly with unfinished products and scrap resulting from pultrusion manufacturing process, are landfilled, with supplementary added costs. Thus, besides the evident environmental benefits, a viable and feasible solution for these wastes would also conduct to significant economic advantages. Design of experiments and data treatment were accomplish by means of full factorial design approach and analysis of variance ANOVA. Experimental results were promising toward the recyclability of GFRP waste materials as aggregates and reinforcement for PM materials, with significant improvements on mechanical properties with regard to non-modified formulations.
Resumo:
Mestrado em Engenharia Mecânica - Construções Mecânicas
Resumo:
O presente trabalho visa apresentar a temática da otimização da produção de corte laser numa empresa do ramo da indústria metalomecânica, denominada Sermec Laser e situada no concelho da Maia no Distrito do Porto. Para alcançar este objetivo foi necessário conhecer o funcionamento atual do processo, como por exemplo, os seus intervenientes, as taxas de ocupação do equipamento de corte a laser e os procedimentos. Só depois de ser explorada essa vertente será possível desenvolver um plano com vista a melhorar esse processo. Este projeto espera criar um plano de melhoria que será testado e, quando for validado, será implementado. As melhorias propostas por este plano passam pelo aumento da eficiência do processo de corte a laser e a alteração de parte do layout da empresa de forma a facilitar e agilizar este mesmo processo. O objetivo final será acrescentar mais valor ao processo, reduzindo os seus desperdícios. Com esta melhoria a empresa ficará a ganhar, pois irá produzir de forma mais ajustada às suas necessidades.